Acknowledgement
본 논문은 교육부에서 지원하는 한국연구재단(NRF)의 기초과학연구사업의 지원을 받아 수행된 연구입니다(2018R1A6A1A03026005).
References
- T.-H. Han, M.-R. Choi, C.-W. Jeon, Y.-H. Kim, S.-K. Kwon, and T.-W. Lee, Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials, Sci. Adv., 2, e1601428 (2016).
- K.-W. Tsai, M.-K. Hung, Y.-H. Mao, and S.-A. Chen, Solution-processed thermally activated delayed fluorescent OLED with high EQE as 31% using high triplet energy crosslinkable hole transport materials, Adv. Funct. Mater., 29, 1901025 (2019).
- A. R. Duggal, C. M. Heller, J. J. Shiang, J. Liu and L. N. Lewis, Solution-processed organic light-emitting diodes for lighting, J. Disp. Technol., 3, 184-192 (2007). https://doi.org/10.1109/JDT.2007.895357
- L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y. Qiu, Solution processable small molecules for organic light-emitting diodes, J. Mater. Chem., 20, 6392-6407 (2010). https://doi.org/10.1039/b926348a
- X. Xing, L. Zhong, L. Zhang, Z. Chen, B. Qu, E. Chen, L. Xiao, and Q. Gong, Essential differences of organic films at the molecular level via vacuum deposition and solution processes for organic light-emitting diodes, J. Phys. Chem. C, 117, 25405-25408 (2013). https://doi.org/10.1021/jp410547w
- F. So and D. Kondakov, Degradation mechanisms in small-molecule and polymer organic light-emitting diodes, Adv. Mater., 22, 3762-3777 (2010). https://doi.org/10.1002/adma.200902624
- H. Chen, Y. Hou, C. E. Halbig, S. Chen, H. Zhang, N. Li, F. Guo, X. Tang, N. Gasparini, I. Levchuk, S. Kahmann, C. O. R. Quiroz, A. Osvet, S. Eigler, and C. J. Brabec, Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design, J. Mater. Chem. A., 4, 11604-11610 (2016). https://doi.org/10.1039/C6TA03755K
- Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Effects of thickness and thermal annealing of the PEDOT: PSS layer on the performance of polymer solar cells, Org. Electron., 10, 205-209 (2009). https://doi.org/10.1016/j.orgel.2008.10.003
- K. Fehse, R. Meerheim, K. Walzer, K. Leo, W. Lovenich, and A. Elschner, Lifetime of organic light emitting diodes on polymer anodes, Appl. Phys. Lett., 93, 083303 (2008).
- J. Cameron and P. J. Skabara, The damaging effects of the acidity in PEDOT: PSS on semiconductor device performance and solutions based on non-acidic alternatives, Mater. Horizons., 7, 1759-1772 (2020). https://doi.org/10.1039/C9MH01978B
- J. Meyer, R. Khalandovsky, P. Gorrn, and A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics, Adv. Mater., 23, 70-73 (2011). https://doi.org/10.1002/adma.201003065
- T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D Cheng, and Y. Cao, Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer, Adv. Energy Mater., 2, 523-527 (2012). https://doi.org/10.1002/aenm.201100598
- J. R. Manders, S. -W. Tsang, M. J. Hartel, T. -H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells, Adv. Funct. Mater., 23, 2993-3001 (2013). https://doi.org/10.1002/adfm.201202269
- A. Perumal, H. Faber, N. Yaacobi-Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, and D. D. C. Bradley, High-efficiency, solution-processed, multilayer phosphorescent organic light-emitting diodes with a copper thiocyanate hole-injection/hole-transport layer, Adv. Mater., 27, 93-100 (2015). https://doi.org/10.1002/adma.201403914
- T. Ding, N. Wang, C. Wang, X. Wu, W. Liu, Q. Zhang, W. Fan, and X. W. Sun, Solution-processed inorganic copper (I) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes, RSC Adv., 7, 26322-26327 (2017). https://doi.org/10.1039/C7RA03433D
- S. Sahoo, D. K. Dubey, M. Singh, V. Joseph, K. R. J. Thomas, and J. -H. Jou, Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter, Jpn. J. Appl. Phys., 57, 04FL08 (2018).
- H. U. Hwang, J. Yoon, Y. -S Lee, J. Lee, J. Lee, K. -G. Lim, J. W. Kim, Enhanced hole injection and transport property of thermally deposited copper thiocyanate (CuSCN) for organic light-emitting diodes, APL Mater., 10, 051109 (2022).
- S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett., 15, 3723-3728 (2015). https://doi.org/10.1021/acs.nanolett.5b00116
- N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. D. C. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, High-efficiency organic photovoltaic cells based on the solution-processable hole transporting interlayer copper thiocyanate (CuSCN) as a replacement for PEDOT: PSS, Adv. Energy Mater., 5, 1401529 (2015).
- U. B. Qasim, M. M. Saeed, H. Ullah, and H. Imran, Investigating the potential of CuSCN as hole transport layer for perovskite solar cells for applications in indoor photovoltaics, Jpn. J. Appl. Phys., 61, 091001 (2022).
- P Worakajit, T Sudyoadsuk, V Promarak, A Saeki, and P Pattanasattayavong, Antisolvent treatment of copper(i) thiocyanate (CuSCN) hole transport layer for efficiency improvements in organic solar cells and light-emitting diodes, J. Mater. Chem. C, 9, 10435-10442 (2021). https://doi.org/10.1039/D1TC02897A
- V. E. Madhavan, I. Zimmermann, A. A. Baloch, A. Manekkathodi, A. Belaidi, N. Tabet, and M. K. Nazeeruddin, CuSCN as hole transport material with 3D/2D perovskite solar cells, ACS Appl. Energ. Mater., 3, 114-121 (2019).
- S. R. Thomas, P. Pattanasattayavong, and T. D. Anthopoulos, Solution-processable metal oxide semiconductors for thin-film transistor applications, Chem. Soc. Rev., 42, 6910-6923 (2013). https://doi.org/10.1039/c3cs35402d
- B. Wang, S. Nam, S. Limbu, J. -S. Kim, M. Ridede, and D. D. C. Bradley, Properties and applications of copper(I) thiocyanate hole-transport interlayers processed from different solvents, Adv. Electron. Mater., 8, 2101253 (2022).
- P. Pattanasattayavong, V. Promarak, and T. D. Anthopoulos, Electronic properties of copper (I) thiocyanate (CuSCN), Adv. Electron. Mater. 3(3), 1600378 (2017).
- E. V. A Premalal, N. Dematage, G. R. R. A. Kumara, R. M. G. Rajapakse, M. Shimomura, K. Murakami, and A. Konno, Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells, J. Power Sources, 203, 288-296 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.034