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Abstract 

This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) 

systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal 

Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by 

Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. 

The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. 

The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate 

future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. 

The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and 

conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical 

Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter 

sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized 

system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance 

short-term load forecasting. 
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1. Introduction12 

 
The virtual power plants (VPPs) lead to its emergent 

advent derived by the integration of renewable energy 

sources with conventional power systems, which will result 

in a paradigm shift in energy management and distribution. 

VPPs synergize the output of a network of microgrids 
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(MGs), each with its own array of distributed energy 

resources (DERs), such as wind turbines, photovoltaic cells, 

and fuel cells. Managing such a complex system requires 

sophisticated Energy Management Systems (EMS) to 

optimize energy flow and ensure reliability. A cornerstone 

of effective EMS is the ability to forecast energy loads 

accurately over short-term periods. This is where the 

challenge of time-series estimation comes into play, 

 
ⓒ Copyright: The Author(s) 
 

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution Non-Commercial License (http://Creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted noncommercial use, distribution, and reproduction in any 

medium, provided the original work is properly cited. 



Yeonwoo LEE / Korean Journal of Artificial Intelligence Vol 12 No 1 (2024) 17-24                             18 

demanding advanced computational techniques capable of 

handling large datasets with intricate patterns. The concept 

of microgrid network (MG) which is well known as a 

promising way to guarantee a reliable energy supply and 

demand of users can be realized by aggregating 

conventional generators, renewable energy systems (RESs), 

and energy storage systems (ESS) along with different loads. 

One of most generally considered RESs is a photovoltaic 

(PV) prosumer utilizing solar power. A smart microgrid is 

defined as an energy production sources such as distributed 

energy resources (DERs), energy storage (battery) facilities, 

energy flow/distribution management. The virtual power 

plant (VPP) is believed to providing highly efficient power 

service to customers through virtually sharing of these 

dispersed DERs, and battery storage units in microgrids 

(MGs). An energy control system such as energy 

management system (EMS) has an important role in a MG 

in order to operate MG’s components and DERs efficiently, 

and to achieve the goals of sustainability in the EMS are 

economic operation, reliability, and environmental impact. 

For a successful forecasting of energy loads within VPPs, 

it is not merely a matter of algorithmic precision, but also it 

is about integrating DERs into a cohesive framework that can 

adapt to the highly dynamic nature of energy markets and 

consumption patterns. The EMS's capability to predict 

energy demand with high accuracy has profound 

implications for the operational efficiency of power systems, 

the integration of renewable energy, and the overall stability 

of the electric grid. For providing such capability, this paper 

presents a groundbreaking approach to short-term load 

forecasting by harnessing the power of artificial intelligence 

(AI). Specifically, it explores the efficacy of long short-term 

memory (LSTM) networks, a type of recurrent neural 

network that is particularly well-suited to recognizing and 

predicting temporal patterns in time-series data. 

Complementing this is the application of the seasonal 

autoregressive integrated moving average (SARIMA) model, 

a renowned statistical method for analyzing and forecasting 

seasonal time-series. 

The methodology detailed herein is based on the real-data 

set retrieved by Korea Power Exchange (KPX). A decade's 

worth of data from the KPX's Electrical Power Statistical 

Information System (EPSIS) provides the training data set 

for the LSTM-SARIMA algorithm foundation. Throughout 

the testing based on these real-dataset, the proposed time 

series-based load estimation and forecasting model is a 

feasible solution to energy load forecasting. By providing a 

robust forecasting model, the research supports EMS in 

minimizing imbalances between energy supply and demand, 

accommodating the variable nature of renewable energy 

sources, and contributing to the overall sustainability and 

resilience of power systems. 

 

2. Theoretical Background 

 
Various load forecasting methods into two primary 

approaches: parametric-based and AI-based methods ass 

shown in Fig. 1. Under the parametric umbrella, the methods 

are further classified into statistical methods and Kalman 

filter techniques. For AI-based methods, the classification 

splits into Fuzzy systems and machine Learning (ML) 

algorithms. In addressing the multifaceted challenge of load 

forecasting, researchers have delineated methods into two 

primary frameworks: parametric-based and AI-based 

methodologies. Each framework comprises several distinct 

approaches with unique characteristics and applications. 

Within the parametric-based category, statistical methods 

are foundational to load forecasting. Linear Regression (LR), 

for instance, posits a direct, linear correlation between 

independent variables and the forecasted load, simplifying 

the predictive process through a straightforward equation. 

Brockwell and Davis (2002) offer a comprehensive 

introduction to such time series forecasting techniques. 

Alternatively, the Moving Average (MA) approach, as 

elucidated by Box, Jenkins, and Reinsel (2015), mitigates 

short-term volatility by averaging past data points, thus 

revealing underlying trends. Extending this concept, the 

Autoregressive Moving Average (ARMA) model, discussed 

by Hamilton (2020), integrates the autocorrelation of time 

series with the moving average of forecast errors to enhance 

predictive accuracy. 

 

 
Figure 1: Load Forecasting Methods 

 

The Autoregressive Integrated Moving Average (ARIMA) 

model, also expounded upon by Box and colleagues (2015), 

further refines the ARMA approach by accommodating non-

stationary data through differencing, allowing for the 

analysis of data with trends or seasonal patterns. The 

Seasonal ARIMA (SARIMA) model, a subset of ARIMA, 

specifically targets seasonal fluctuations within time-series 

data, making it particularly relevant for load forecasting in 

energy sectors with pronounced seasonal consumption 

patterns. The Kalman Filter represents another parametric-

based method, distinguished by its recursive mechanism that 
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processes a series of measurements over time, accounting for 

statistical noise and other inaccuracies. Kalman's seminal 

1960 paper provides a profound insight into this filtering and 

prediction technique. 

Shifting to AI-based methods, fuzzy systems, grounded 

in Zadeh's fuzzy set theory (1965), offer a stark contrast to 

the precision of statistical methods by modeling the 

imprecision inherent in human reasoning and decision-

making processes. This method is particularly advantageous 

in scenarios where the data or the system behavior is too 

complex to be captured by conventional quantitative 

techniques. 

Machine Learning (ML), a rapidly evolving domain 

within AI, encompasses a variety of algorithms and models, 

each with unique capabilities. Artificial Neural Networks 

(ANNs), as detailed by Goodfellow, Bengio, and Courville 

(2016), mimic the neural structure of the brain and are adept 

at recognizing complex patterns and performing predictive 

modeling. Support Vector Machines (SVMs), introduced by 

Cortes and Vapnik (1995), provide a powerful framework for 

classification and regression, especially beneficial in high-

dimensional spaces. 

Feedforward Neural Networks (FNNs), a specific type of 

ANN where the connections between nodes do not form 

cycles, are tailored for static pattern recognition, as 

expounded upon by Haykin (1998). Particle Swarm 

Optimization (PSO), a technique inspired by the social 

behavior of animals, is detailed by Kennedy and Eberhart 

(1995) and excels in optimizing problems by refining 

candidate solutions iteratively. Lastly, Long Short-Term 

Memory (LSTM) networks, a special class of ANNs 

designed by Hochreiter and Schmidhuber (1997), excel in 

identifying and predicting sequence patterns, making them 

particularly suited for time-series forecasting tasks. 

The confluence of these methodologies presents a rich 

toolkit for researchers and practitioners to forecast loads with 

increasing precision, adapting to the growing complexities 

and demands of modern energy systems 

 

3. LSTM-SARIMA Load Forecasting 

 
The VPP can consist of separate DERs, traditional 

conventional heating power plant (CHP), energy storage 

facilities, and dispatchable loads and also, it can 

hierarchically aggregate MGs and DERs. The energy control 

system in VPP utilizing AI algorithm-based Energy 

Management System (EMS) is shown in Fig. 2. 

In the (EMS) that oversees the microgrids forming a VPP, it 

is essential to predict energy demand for energy trading 

purposes, segregating into short-term and long-term 

forecasts. These predictions must efficiently allocate the 

generated renewable energy resources as they become 

available. Although not illustrated in Figure 2, the EMS is 

required to forecast the volume of energy trades, ranging 

from as short as 15-minute intervals to as long as daily 

intervals. The proposed system fulfills these functions using 

AI-based Long Short-Term Memory (LSTM) methods and 

parametric-based Seasonal Autoregressive Integrated 

Moving Average (SARIMA) models. The LSTM is utilized 

to learn patterned energy trade datasets and implement short-

term time series predictions. Meanwhile, the SARIMA 

model employs seasonally adjusted automated regression 

averages for forecasting long-term trends in energy trading. 

 

 
Figure 2: Conceptual Model of Virtual Power Plant with 

AI Algorithm based Energy Management System 
 

3.1. LSTM Model  
 

The LSTM model is a type of recurrent neural network 

(RNN) used for sequence prediction. It can be represented 

by the following equations: 

 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)        (1) 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)       (2) 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔)    (3) 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)       (4) 

𝑐𝑡 =  𝑓𝑡  ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡             (5) 

ℎ𝑡 =  𝑜𝑡  ⊙ tanh (𝑐𝑡)               (6)     

 

where 𝑥𝑡 represents the input at time (𝑡). ℎ𝑡 is the hidden 

state at time (𝑡). 𝑐𝑡 is the cell state at time (𝑡). 𝑖𝑡, 𝑓𝑡, 𝑔𝑡, 

and 𝑜𝑡  are the input, forget, cell, and output gates, 

respectively. 𝜎 represents the sigmoid activation function. 

𝑡𝑎𝑛ℎ represents the hyperbolic tangent activation function. 

𝑊 and 𝑏 are weight matrices and bias terms for the gates. 

The LSTM model uses these equations to process sequential 

data and capture long-term dependencies, making it suitable 

for time series forecasting. 

 

3.1.1. LSTM Model Parameters  

The key parameters of LSTM network are as follows. 

𝑁𝑛𝑒𝑢𝑟𝑜𝑛𝑠  parameter specifies the number of neurons or 

units within the LSTM layer. The chosen number of neurons 

influences the model's ability to identify and learn patterns 
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in the data, with a higher number typically providing a 

greater capacity for complexity but also requiring more 

computational power. Activation function (𝜎) is applied to 

the output of a neuron or unit in the LSTM layer. Generally, 

the ReLU (rectified linear unit) function is used due to its 

advantages in mitigating the vanishing gradient problem and 

accelerating the convergence of stochastic gradient descent. 

Input shape parameter (𝑖𝑡) details the expected dimensions 

of the input data, encompassing both the sequence length 

and the number of features per sequence. The input shape 

must be carefully determined to match the structure of the 

input dataset, ensuring that the model can process the data 

effectively. 

Incorporating these parameters, the LSTM model is 

constructed to provide the capability to discern both the 

short-term and long-term dependencies within time-series 

data. This is particularly beneficial for applications like 

power supply and demand forecasting, where temporal 

patterns and the influence of past events play a critical role 

in prediction accuracy. The proposed short-term energy 

trade forecasting model is shown in Fig. 3. 

 

 
Figure 3: Proposed Short-term Energy Trade 

Forecasting Model 
 

3.2. SARIMA Model  
 

The SARIMA model is a type of time series forecasting 

method used to predict future points in the series. It’s an 

extension of the ARIMA (Autoregressive Integrated 

Moving Average) model that also accounts for seasonality. 

SARIMA models are particularly useful when a time series 

is influenced by seasonal factors, such as sales data that 

peaks during the holiday season or electricity consumption 

that varies with the seasons.  

 

3.2.1. Components of SARIMA Model 

The components of a SARIMA model are as follows.  

Seasonal Autoregressive (SAR): This part of the model 

captures the dependencies among observations at previous 

times that are separated by a number of periods equal to the 

season length. For example, if a monthly data is given with 

a yearly cycle, the season length would be 12. 

Seasonal Integration (I): This involves differencing the 

series at the seasonal periods to make it stationary. In other 

words, it is the process of subtracting the observation from 

the same season, say a year or a month earlier. 

Seasonal Moving Average (SMA): This part models the 

error of the series as a linear combination of error terms that 

occurred contemporaneously and at various times in the past. 

Non-seasonal ARIMA Model: This is the underlying 

ARIMA model which may include non-seasonal 

autoregressive terms, non-seasonal differences, and non-

seasonal moving average terms. 

 

3.2.2. SARIMA Model Parameters 

The SARIMA model is a time series forecasting model. 

It can be represented by the following equation: 

 

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡           (7) 

 

where: 𝑌𝑡 represents the current time series data point. 𝑐 

is a constant term. 𝜙1  is the autoregressive (AR) 

coefficient, which represents the relationship between the 

current value and the previous value. 𝑌𝑡−1 is the previous 

time series data point. 𝜃1 is the moving average (MA) 

coefficient, representing the relationship between the 

current value and the previous error term 𝜖𝑡−1 . 𝜖𝑡  is the 

error term at the current time step. 

SARIMA Model Parameters: The SARIMA model uses 

these parameters to capture the autoregressive, differencing, 

and moving average components of the time series, along 

with seasonal patterns. The parameters of the SARIMA 

model can be typically denoted as 

 

 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄, 𝑆).          (8) 

 

Where 𝑝 is the number of autoregressive order, 𝑑 is the 

number of non-seasonal differences needed for stationarity, 

𝑞 is the number of lagged forecast errors in the prediction 

equation (moving average order), 𝑃, 𝐷  and 𝑄  are the 

seasonal equivalents of 𝑝, 𝑑 and 𝑞, 𝑆 is the length of the 

seasonal cycle. These models are fundamental in time series 

analysis and forecasting, with SARIMA focusing on 

statistical modeling, and LSTM focusing on deep learning-

based sequential prediction. These model parameters define 

the structure and behavior of the SARIMA and LSTM 

models. SARIMA model parameters describe 

autoregressive, differencing, and seasonal patterns in time 

series data, while LSTM model parameters define the 

architecture and activation functions used in a recurrent 

neural network for time series prediction. These parameters 

should be adjusted based on the specific characteristics of 

the given data and problem. 

The key parameters of a SARIMA model are as follows.  

Auto-Regressive Order Parameter (𝒑): this indicates 

how far back in the past the values influence future 

predictions. A higher value implies longer-term 
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dependencies. Adjusting this parameter is important if long-

term patterns in time series data are significant. 

Differencing Parameter (𝒅): This is used to stabilize the 

time series data. Setting the appropriate order of 

differencing for non-stationary time series data is crucial. 

Moving Average Order Parameter (𝒒): This focuses on 

adjusting the model using the prediction errors. It helps to 

better capture the noise or irregular fluctuations in the time 

series. 

Seasonal Parameters ( 𝑷, 𝑫, 𝑸, 𝑺 ): For data with 

seasonality, these parameters are important. 𝑃, 𝐷, 𝑄 

represent the seasonal AR, differencing, and MA parameters, 

respectively, and 𝑆 denotes the seasonal period. 

 

Figure 4 illustrates the overall architecture of the 

proposed hybrid SARIMA and LSTM network model. The 

SARIMA model extracts the autoregressive linear regression 

feature of energy trade data because in a short time historical 

data, for example 5 min. A linear model like SARIMA can 

forecast with high accuracy linearity that is intrinsic in the 

data. As can be seen from the overall architecture, the energy 

trade data forecasting model is designed from several LSTM 

network blocks as shown in Fig. 5.  

 

 
Figure 4: Overall Archtecture of Hybrid SARIMA-LSTM 

Network Model 
 

 

 
Figure 5: LSTM Network 

 

4. Simulation and Discussion  
 

4.1. Simulation Setup 
 

The SARIMA model used in our simulation test above has 

the parameters set to (1, 1, 1)(1, 1, 1, 12), which indicates a 

simple model with one autoregressive term, one difference, 

and one moving average term, both for the non-seasonal and 

seasonal parts, with an annual seasonality. Adjusting the 

parameters of a SARIMA model can significantly impact 

the accuracy of time series forecasting. Understanding the 

impact of each parameter helps in determining which ones 

are most critical. Finding the optimal parameters usually 

requires several attempts, and each attempt should be 

evaluated through cross-validation. 

In the proposed framework, an artificial neural network 

(ANN), specifically a multi-layer perceptron (MLP), is 

implemented to complement the SARIMA model's 

predictive capabilities. The ANN approach mirrors the 

structure of the human brain's neural network, capitalizing on 

its ability to discern complex patterns and relationships 

within vast datasets. This synergy facilitates a more nuanced 

understanding of the dynamics involved in real-time power 

supply and demand forecasting. Within this context, the 

ANN architecture selected is the MLPRegressor from the 

scikit-learn library, which is characterized by its layered 

structure of interconnected neurons. The configuration of the 

model is as follows: The `hidden_layer_sizes` parameter is 

set to (1, 0, 0), designating a single hidden layer consisting 

of 100 neurons, providing sufficient complexity to capture 

intricate patterns without overfitting. The `activation` 

function chosen is 'ReLU', favored for its efficiency and 

effectiveness in non-linear transformations within the 

network. For weight optimization, the `solver` employed is 

'ADAM', renowned for its performance in large datasets and 

its adaptive learning rate capabilities. The `max_iter` 

parameter is fixed at 2000, ensuring ample iterations for the 

optimization algorithm to converge, reflecting a balance 

between computational efficiency and the accuracy of the 

model. 

This ANN is adept at assimilating the intricate behavior 

of energy trade values, trained exhaustively on historical 

datasets to extrapolate future trends. The meticulous training 

process allows the model to internalize and generalize from 

the embedded patterns, thereby enhancing the fidelity of the 

forecasts generated for power supply and demand 15 minutes 

into the future. Both the LSTM-SARIMA and ANN models 

provide a forecast for the energy trade in GWh for 2023, and 

their combined forecast aims to leverage the strengths of both 

models to provide a more accurate prediction. 

 

4.2. Simulation Results 
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4.2.1. Simulation Step of SARIMA Model  

Forecasting with a SARIMA model involves the following 

steps. 

 
Forecasting Step of SARIMA Model, 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄, 𝑆) 

Step 1: Model Identification: Using autocorrelation and partial 

autocorrelation functions to estimate the initial values of p, 

d, q, P, D, and Q.  

Step 2: Model Identification: Using autocorrelation and partial 

autocorrelation functions to estimate the initial values of p, 

d, q, P, D, and Q  

Step 3: Parameter Estimation: Using statistical techniques like 

maximum likelihood estimation to estimate the parameters 

of the model. 

Step 5: Model Checking: Using diagnostic tests to determine 

whether the residuals are white noise (indicating a good fit). 

Step 4: Forecasting: Using the model to forecast future data points. 

 

SARIMA models are powerful tools but also complex, 

requiring careful tuning and validation to ensure accurate 

forecasts. They are widely used in economic and financial 

time series analysis, among other fields. 

 

4.2.2. Energy Trade Dataset  

The dataset employed for the enhancement of the 

forecasting model encompasses a comprehensive range of 

distributed energy resources. This includes both renewable 

energy modalities and traditional power generation facilities. 

The dataset has been procured from the Korea Power 

Exchange (KPX) Electrical Power Statistical Information 

System (EPSIS), representing a longitudinal span of ten 

years. This extensive temporal dataset has been pivotal in 

substantiating the efficacy of the integrated Long Short-

Term Memory (LSTM) and Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model, as 

delineated in Figure 6.  

In the proposed framework, an ANN, specifically a MLP, 

is implemented to complement the SARIMA model’s 

predictive capabilities. The ANN approach mirrors the 

structure of the human brain’s neural network, capitalizing 

on its ability to discern complex patterns and relationships 

within vast datasets. This synergy facilitates a more nuanced 

understanding of the dynamics involved in real-time power 

supply and demand forecasting. 

 

 
Figure 6: Real-dataset retrieved by Korea Power Exchange 

(KPX), Electrical Power Statistical Information System 
(EPSIS) 

 

4.2.3. Results  

Figure 7 delineates the dynamics of energy trade in 

Korea over the period 2022 to 2023, encompassing an array 

of energy resources including traditional thermal power 

plants, fuel cell technology, wind turbines, hydroelectric 

(water) power, biomass, and marine energy generation 

systems. The data indicate that a substantial portion of the 

nation’s energy production is attributed to traditional 

thermal power plants. Concurrently, renewable energy 

sources are depicted as occupying a pivotal role in 

augmenting energy security and addressing imbalances and 

shortages. These renewable sources not only contribute to 

diversifying the energy mix but also play a critical role in 

supporting the transition towards a more sustainable and 

resilient energy system. The analysis underscores the 

strategic importance of enhancing the capacity and 

efficiency of renewable energy technologies to mitigate 

reliance on conventional fossil fuel-based power generation, 

thereby promoting environmental sustainability and energy 

independence 

 

 
Figure 7: Amount of Energy Trade in Korea (GWh) over the 

period 2020 to 2023 
 

Figure 8 presents the average volume of energy trade 

over the past decade. This longitudinal analysis encapsulates 

the aggregated transactions across various energy sectors, 
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providing insights into trends and patterns in energy 

exchange during this period. 

 

 
Figure 8: Average Amount of Energy Trade in Korea (GWh) 

over the past 10 years used for model training 

 

The result graph of Figure 9 has been adjusted to reflect 

the SARIMA model’s forecasts with the added constant to 

correct the direction of prediction relative to the actual data. 

Now the orange line for the SARIMA forecast should trend 

in a direction that is more consistent with the actual data 

trend, as should the red line for the adjusted hybrid LSTM-

SARIMA forecast. The changes made aim to ensure that the 

models’ forecasts are better aligned with the historical data, 

providing a more accurate representation for the year 2023. 

To predict the real-time power supply and demand 15 

minutes into the future, a forecasting model employing both 

the LSTM-SARIMA model and ANN can be constructed. 

Initially, the SARIMA model will be utilized to forecast. 

Considering the seasonality and trend of the time series data, 

followed by the construction of the ANN model to learn 

nonlinear relationships. The methodology encompasses the 

following steps: Data Preparation: Time series data will be 

transformed into a suitable format. SARIMA Model 

Construction: A SARIMA model will be established and 

trained for the time series data. ANN Model Construction: 

An ANN model will be built and trained using the same 

dataset. Forecast Execution: Future power supply and 

demand will be forecasted using both models. 

Figure 10 demonstrates the energy trade forecasts 

generated by the proposed hybrid LSTM-SARIMA model 

augmented with an Artificial Neural Network (ANN) 

framework. Data preprocessing involved segmenting 

datasets into specified time intervals prior to the 

construction of the SARIMA model. Adjustments to the 

SARIMA parameters (𝑃, 𝐷, 𝑄, 𝑆) were deemed necessary 

to tailor the model to the unique size and attributes of the 

dataset. As depicted in Figure 10 and delineated in Eq. (8), 

the parameters were refined to configurations including (1, 

1, 1, 12), (2, 1, 1, 12), (2, 2, 1, 12), and (2, 2, 2, 12). Forecasts 

produced with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) 

demonstrated a high fidelity to the actual observed data. The 

hybrid LSTM-SARIMA model exhibited proficiency in 

tracking the ascending trends while effectively averaging 

fluctuations in both ascending and descending trends. 

Consequently, it is asserted that meticulous selection of the 

SARIMA parameters, coupled with an optimal LSTM 

averaging interval, is crucial to enhance the precision of 

energy trade forecasting and prediction 

 

 
Figure 9: Energy Trade Forecasting Result based on 
SARIMA, ANN, and SARIMA+ANN model for the year 2023 
 

 
Figure 10: Average Amount of Energy Trade in Korea 

(GWh) over the period 2023 

 

 

5. Conclusion  
 

Our findings indicate that the model's capability to 

discern and leverage the inherent patterns and seasonality in 

energy usage data results in a significant enhancement in 

forecasting accuracy. The utilization of a broad spectrum of 

distributed energy resources within the model ensures its 

applicability to a diverse energy network, reflecting real-

world complexities. The empirical validation, carried out 

with a decade of data from the KPX's EPSIS, confirms that 

the proposed model outstrips traditional forecasting 

methods. The implications of this research are twofold. 

Firstly, it offers a viable and improved method for EMS in 

virtual power plants, leading to better management of 

energy supply and demand. Secondly, it contributes to the 

body of knowledge in time-series forecasting, presenting a 

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

Jan. Feb. March April May June July Aug. Sep. Oct. Nov. Dec.

Average Amount of Energy Trade in Korea (GWh)

Conv.Heat FuelCell PhotoVoltaic WindTurbine WaterEnerg. MarineEnerg. BioEnerg.

SARIMA+ANN prediction

SARIMA prediction

ANN prediction



Yeonwoo LEE / Korean Journal of Artificial Intelligence Vol 12 No 1 (2024) 17-24                             24 

robust framework that can be adapted and extended to other 

domains requiring precise prediction capabilities. 

In conclusion, this study has presented a comprehensive 

analysis of energy trade forecasting by deploying a cutting-

edge hybrid LSTM-SARIMA model integrated with an 

ANN framework. The sequence of figures delineated 

throughout the paper has illuminated the efficacy of the 

forecasting model. The integrative approach of combining 

LSTM and SARIMA models, augmented by ANN, 

represents a promising direction for future forecasting 

methodologies in the energy sector. The proposed hybrid 

LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and 

(2, 1, 1, 12) demonstrated a high fidelity to the actual 

observed data. Thus, it is concluded that the optimized 

system notably surpasses traditional forecasting methods, 

indicating that this model offers a viable solution for EMS 

to enhance short-term load forecasting. Further 

investigation into parameter optimization and model 

robustness is recommended to bolster the reliability of 

forecasts in fluctuating market conditions. 
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