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Abstract 

Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the 

application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to 

brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, 

and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution 

to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images 

and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain 

and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, 

respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed 

image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used 

as basic data for the above studies. 
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1. Introduction12 
 

Computed tomography (CT) is a fundamental and 

important examination for diagnosing diseases. It is used 

effectively in the medical field. CT can depict anatomical 

structures of bones, soft tissues, and blood vessels inside the 

human body in three dimensions. Moreover, conditions such 

as the window width, window level, and kernel can be 

adjusted on the raw data acquired from CT scans to obtain 
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images that have high diagnostic value and are adapted to 

the purpose while reconstructing the data. Among the 

various types of CT, brain CT provides soft tissue setting 

images and bone setting images by examining patients with 

head injuries caused by traffic accidents and similar 

incidents. Soft tissue setting images are utilized to observe 

intracerebral hemorrhage and cerebral infarction (Brenner et 

al., 2007). Meanwhile, bone setting images are used to 

identify fractures in the bones that form the skull (Hsieh et 
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al., 2013). Sufficient studies have been conducted to 

demonstrate the clinical necessity and effectiveness of brain 

CT. Furthermore, according to statistical data published by 

the Health Insurance Review and Assessment Service 

(HIRA), the number of brain CT scans conducted for 

diagnosis, treatment, and health checkups has been 

increasing (Health Insurance Review & Assessment 

Service, 2022). However, CT equipment uses X-rays, and 

exposure to radiation occurs. Furthermore, the radiation 

dose is higher than that in general X-ray examinations. In 

addition, the risk of adverse health effects of radiation on the 

head and neck areas examined in brain CT is high. The 

International Commission on Radiological Protection 

(ICRP), which specifies radiation dose limits, has stipulated 

new tissue weighting factors (ICRP Publication 103, 2007). 

In recent years, Fourth Industrial Revolution technologies 

have been applied to various fields, and the utility of these 

technologies has been demonstrated. In the medical imaging 

field, studies incorporating various technologies are actively 

underway. In particular, a convolutional neural network 

(CNN; one of the major deep learning algorithms) is an 

artificial neural network that extracts features from images. 

When applied to medical images, CNN have demonstrated 

remarkable performance (Shen et al., 2017). A super-

resolution technique has also been implemented based on 

CNN (Dong et al., 2015). This technique improves the 

resolution of low-resolution (LR) images and outputs these 

as high-resolution (HR) images. In general, when the 

amount of X-rays decreases in CT, the resolution of CT 

images reduces correspondingly. This produces LR images 

(Whiting et at., 2002). If the CNN-based super-resolution 

technique is applied to such CT images, it can potentially 

produce images that have similar image quality as 

conventional CT images. That is, it may be feasible to 

generate HR images from LR images obtained using a lower 

amount of X-rays, thus reducing the radiation dose. 

Therefore, there is a need to conduct research on the 

radiation dose and image quality by applying the CNN-

based super-resolution technique to brain CT, which has the 

drawback of high radiation dose but has been demonstrated 

to be clinically effective and is being used increasingly for 

examination. To provide foundation data for such research, 

this study aims to preliminarily assess the effectiveness of 

applying the super-resolution technique. 

 
 

2. Related Work 
 

2.1. Research Subjects 

 
The images used in the experiment were collected 

retrospectively using the anonymization function of the 

picture archiving and communication system (PACS) from 

patients who underwent brain CT scans without contrast 

media from January to February 2021. 

 

2.2. Data Composition and Preprocessing 
 

The dataset was divided into 615 images of the brain and 

615 images of bones. Each image was constructed using 

multi-planar reformation (MPR) with a matrix size of 512×
512. Moreover, it was aligned parallelly to the skull base, 

encompassing the area from the skull base to the vertex. To 

generate LR images, the ground truth (GT) of the dataset 

was down-sampled to matrix sizes of 16×16, 32×32, 64×

64, 128×128, and 256×256 using the resize function in 

openCV. Then, the image was upscaled back to the size of 

the GT (512×512). Hence, the data were designed such that 

training could be performed with five conditions for each 

dataset. The training process is shown in Figure 1. 

 

 
Figure 1: Low-Resolution CT images generation and 

SRCNN model train dataset 

 

2.3. Modeling and Implementation Environment 
 

The model used in the experiment is a super-resolution 

convolutional neural network (SRCNN). It is the first model 

that applied the super-resolution technique to deep learning 

(Dong et al., 2015). SRCNN has a simple structure and 

consists of 3 processes patch extraction, non-linear mapping, 

and reconstruction. This is shown in Figure 2. 
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Figure 2: SRCNN network architecture 

 

To implement this model, the system utilized Ubuntu 

(ver. 20.04.6 LTS), a CPU (Intel Core X i9-9940X), two 

GPUs (GeForce RTX 3090, D6X 24G), and four 32G 

RAMs (DDR4 32G PC-425600). In addition, Python (ver. 

3.6) and PyCharm Integrated Development Environment 

(IDE, ver. 2021.2) were used. Moreover, TensorFlow (ver. 

2.1.0), Keras (ver. 2.3.1), Matplotlib (ver. 3.2.2), Seaborn 

(ver. 0.11.2), NumPy (ver. 1.19.2), and OpenCV (ver. 3.3.1) 

libraries were used for analysis. Rectified linear unit (ReLu) 

and mean squared error (MSE) were used as the functions 

(He et al., 2015, Gudivada et al., 2017). Adaptive moment 

estimation (Adam) was used as the optimizer (Kingma et al., 

2014). The equation for each function is shown in Equation 

(1) – (3). 

 

𝑅𝑒𝑙𝑢 =  {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

} = max (0, 𝑥)               (1) 

Where 𝑥 is input value, if input value is less than 0, it is 0 

and if input value was greater than 0, the input value is sent 

as is. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                       (2) 

 

Where 𝑦𝑖  is correct label and 𝑦̂𝑖  is value estimated by the 

neural network. 

 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝐽(𝜃) 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇𝜃𝐽(𝜃))
2

 

𝜃 =  𝜃 −
𝜂

√𝑣̂𝑡+𝜖
𝑚̂𝑡                           (3) 

 

Where 𝑚𝑡  is moment 𝑣  is exponential averaged, 𝑣  is 

exponential average of the slope squared and is G value of 

RMSProp. And generally, 𝛽1 is 0.9, 𝛽2 is 0.999, 𝜖 is 10−8. 

 

2.3. Evaluation Metrics 
 

Quantitative evaluation metrics were used to evaluate the 

results. The evaluation was performed by calculating the peak 

signal-to-noise ratio (PSNR), structural similarity index map 

(SSIM), and loss measured with MSE for each result (Johnson 

et al., 2006; Wang et al., 2004; Mathieu et al., 2015). The 

equation for each metric is shown in Equation (4) and (5).  

 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑅2

𝑀𝑆𝐸
)                        (4) 

 

Where 𝑅 is maximum value of the pixel. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
              (5) 

 

Where 𝜇𝑥, 𝜇𝑦 is local means, 𝜎𝑥 , 𝜎𝑦 is standard deviations, 

𝜎𝑥𝑦 is cross-covariance for images 𝑥, 𝑦. And 𝐶1 is (𝐾1𝐿)2, 

𝐶2 is (𝐾2𝐿)2, 𝐾1 is 0.01, 𝐾2 is 0.03, 𝐿 is specified dynamic 

range value. 

 

 

3. Performance Evaluation and Results 
 

3.1. Brain Windowing Setting CT Images 

 
Brain windowing setting CT image quality evaluation 

metric of PSNR and SSIM of CT images increased as the 

resolution increased, and the loss decreased, so that LR 

images were generated into HR images through the 

application of SRCNN model, and the image quality of the 

generated images was improved at the same time. 

Additionally, the percentage differences between PSNR, 

SSIM and Loss minimum and maximum values increased 

by 219.76%, 142.83%, and decreased by 1.45%, 

respectively. Table 1 shows the results obtained using the 

quantitative evaluation metrics. In addition, Figure 3 shows 

the images for each training result obtained using the brain 

windowing setting CT dataset. 

 

Table 1: Evaluation metrics for results of brain windowing 

setting CT dataset 
Resolution PSNR(dB) SSIM Loss 

16 × 16 15.34 0.68 0.0299 

32 × 32 18.36 0.82 0.0152 

64 × 64 22.16 0.92 0.0063 

128 × 128 27.44 0.96 0.0019 

256 × 256 33.72 0.98 0.0004 

Note: PSNR is peak signal-to-noise ratio, SSIM is structural similarity 
index map 
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Resolutio
n 

Brain Windowing setting CT images 

GT LR Pred. 

16 × 16 

   

32 × 32 

   

64 × 64 

   

128 × 128 

   

256 × 256 

   
Note: GT is ground truth, LR is low resolution, Pred. is prediction 

 
Figure 3: Results images of SRCNN according to CT brain 

windowing setting 

 

3.2. Bone Windowing Setting CT Images 

 
Bone windowing setting CT image quality evaluation 

metric of PSNR and SSIM of CT images increased as the 

resolution increased, and the loss decreased, so that LR 

images were generated into HR images through the 

application of SRCNN model, and the image quality of the 

generated images was improved at the same time. 

Additionally, the percentage differences between PSNR, 

SSIM and Loss minimum and maximum values increased 

by 193.16%, 155.91%, and decreased by 2.01%, 

respectively. Table 2 shows the results obtained using the 

quantitative evaluation metrics. In addition, Figure 4 shows 

the images for each training result obtained using the bone 

windowing setting CT dataset. 

 

Table 2: Evaluation metrics for results of bone windowing 

setting CT dataset 
Resolution PSNR(dB) SSIM Loss 

16 × 16 18.22 0.63 0.0153 

32 × 32 20.35 0.84 0.0094 

64 × 64 23.89 0.93 0.0042 

128 × 128 29.04 0.96 0.0013 

256 × 256 35.20 0.98 0.0003 

Note: PSNR is peak signal-to-noise ratio, SSIM is structural similarity 
index map 

 
Resolutio

n 

Bone Windowing setting CT images 

GT LR Pred. 

16 × 16 

   

32 × 32 

   

64 × 64 
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128 × 128 

   

256 × 256 

   
Note: GT is ground truth, LR is low resolution, Pred. is prediction 

 
Figure 4: Results images of SRCNN according to CT bone 

windowing setting 

 
 

4. Discussion 

 
This study was conducted to apply the CNN-based super-

resolution model to brain CT images to obtain visible 

images, assess the effectiveness of applying the super-

resolution model by analyzing the results using the 

evaluation metrics, and provide foundational data for future 

research related to radiation dose and image quality. For 

both the datasets, remarkable PSNR, SSIM, and loss values 

were achieved by the training of LR images down-sampled 

using a higher matrix size than by the training of LR images 

down-sampled using a lower matrix size. For the bone 

dataset, the LR images down-sampled with a matrix size of 

256×256 achieved the best performance (PSNR = 35.20183, 

SSIM = 0.976, and loss = 0.000307). Moreover, the results 

for the bone dataset were generally higher than those for the 

brain dataset. This outcome can be attributed to the fact that 

the portion of the brain image occupied by emphasized 

pixels is smaller than that of the bone image, which is 

advantageous for computations required for the training and 

facilitates the extraction of features in the convolution layer 

(Brownlee et al., 2016). These results were compared with 

the most remarkable results of similar previous studies. 

Georgescu et al. used a brain CT dataset and obtained the 

following super-resolution results: PSNR = 36.39 and SSIM 

= 0.9291(Georgescu et al., 2020). Wang et al. applied the 

super-resolution technique to brain MRI images. They 

attained a PSNR of 37.38 and an SSIM of 0.9623(Wang et 

al., 2020). The PSNR value of this study was lower than 

those of the previous studies, whereas its SSIM value was 

higher. The parameters, datasets, training methods, and 

structure of the model used differed across the studies.    

Therefore, this is not an effective comparison. However, 

a simple comparison could be performed using the same 

evaluation metrics, and it can be determined that the results 

of this study are significant based on the comparison result. 

A notable aspect of the method used in this study is that 

the previous studies trained their models using images 

focused on soft tissues inside the brain, whereas the model 

in this study was trained on soft tissue images as well as 

bone images. This approach is significant because it is based 

on real-world clinical cases. Moreover, it supplements the 

deficiency when assuming the application of this method in 

clinical practice. Furthermore, by utilizing the LR images 

obtained using the GT and by varying the matrix size from 

16×16 to 256×256 to train the model, this approach 

implemented images with varying resolution according to a 

decrease in radiation. As a result, it provided foundational 

data and reference data for comparing the results when 

applying the super-resolution technique to images obtained 

according to different radiation doses. The limitations of this 

study are as follows. In general, better results can be 

obtained by using a large amount of data to train the model. 

Many cases support this assertion, and studies have been 

conducted that utilized data augmentation to perform 

training for better results (Cubuk et al., 2018, Zhang et al., 

2018). However, the experiment in this study was not 

conducted with a relatively large amount of data. It was 

difficult to identify cases that quantitatively indicated the 

amount of data appropriate for the training method used in 

this study. Furthermore, because this study was an 

experimental approach to research, few reference papers 

were considered. In addition, similar previous studies used 

different amounts of data. Therefore, the amount of data was 

determined by considering the performance of the 

workstation used for training. It is likely that results with 

better metrics than those of the results of this experiment can 

be obtained if the amount of data increases dramatically.    

However, it is considered that the results of this study 

were sufficiently significant in that these aligned with the 

objectives of this study. An additional limitation of this 

study is that the evaluation metrics used in this experiment 

(PSNR, SSIM, and loss) are generally used to evaluate 

super-resolution. However, there are challenges with fully 

evaluating super-resolution quantitatively (Wang et al., 

2004). CT is a very important imaging examination in 

diagnosing diseases, but radiation dose reduction is 

necessary considering the side effects caused by radiation. 

However, a decrease in radiation dose results in a decrease 

in the signal required for image acquisition, which results in 

increased noise and reduced image quality, resulting in low-

quality images that are unsuitable for diagnosis, making it 
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difficult to distinguish between anatomical structures and 

lesions. This study is because super-resolution is a technique 

that predicts and presents solutions to unsolved problems.    

Consequently, the results can be interpreted differently 

depending on the purpose or the individual receiving the 

results, which is a subjective assessment. Hence, there is a 

limitation in performing the evaluation simply with 

quantitative metrics. Therefore, it is considered that 

additional analysis, in conjunction with the existing 

evaluation metrics, is required to perform important 

evaluations for the required purpose.  
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