DOI QR코드

DOI QR Code

Recovering Critical Metal Ions from Battery Wastes: A Brief Review

폐배터리에서 희소금속을 회수하는 기술에 대한 총론

  • Hyo Jung Kim (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Cheol Lee (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Won Seok Chang (Frontier Research & Training Institute, Korea District Heating Corporation) ;
  • Go Gi Lee (Industrial Materials Research Group, Research Institute of Industrial Science and Technology) ;
  • Jong Suk Lee (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 김효정 (서강대학교 화공생명공학과) ;
  • 이철 (서강대학교 화공생명공학과) ;
  • 장원석 (한국지역난방공사 미래사업처) ;
  • 이고기 (포항산업과학연구원 산업소재연구그룹) ;
  • 이종석 (서강대학교 화공생명공학과)
  • Received : 2023.12.05
  • Accepted : 2023.12.28
  • Published : 2024.02.29

Abstract

The rapid expansion of the electric vehicle market has led to increased demand for battery recycling technologies. The recycling of spent batteries is crucial to stabilize the supply of rare metals, including lithium, cobalt and nickel, which are essential components for the battery industry. In addition, the technology for recycling spent batteries can help to reduce environmental and health impacts. This review presents the theoretical principles behind the metal recovery technology and the processes that are currently commercially available. It also describes trends in research and technological developments that aim to improve existing processes, and provides an overview of where recycling technology is headed.

최근 전기차 시장의 확장으로 배터리 산업이 급격히 성장함에 따라 폐배터리 리사이클링 기술 개발의 필요성이 증가하고 있다. 폐배터리 리사이클링 기술은 배터리 산업에 핵심적인 리튬, 코발트, 니켈 등 희소금속의 공급을 안정화하고 환경 및 인간의 건강에 미치는 영향을 경감할 수 있다. 본 총설에서는 금속 회수 기술의 배경이 되는 이론적 원리와 현재 상용되고 있는 금속 회수 공정을 소개하고자 한다. 또한, 기존 공정의 문제점을 개선하려는 연구 및 기술 개발 동향을 서술하여 리사이클링 기술이 나아가야 할 방향을 소개하고자 한다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20217510100020, 저품위 공정 폐액으로부터 희소금속 회수 공통 핵심(농축, 분리회수)공정 플랫폼 구축 및 소재화 기술 개발)과 2022년도 정부(환경부)의 재원으로 한국환경산업기술원의 지원을 받아 수행된 연구임(2022R1A2C2006812, 혁신도전형 플라즈마 활용 폐유기물 고부가가치 기초원료화 기술개발사업).

References

  1. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, "Lithium-ion batteries: Outlook on present, future, and hybridized technologies", J. Mater. Chem. A, 7, 2942-2964 (2019).  https://doi.org/10.1039/C8TA10513H
  2. J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367 (2001).  https://doi.org/10.1038/35104644
  3. J. B. Goodenough and K.-S. Park, "The Li-Ion rechargeable battery: A perspective", J. Am. Chem. Soc., 135, 1167-1176 (2013).  https://doi.org/10.1021/ja3091438
  4. Grand View Research, "Lithium market size, share & trends analysis report by product (carbonate, hydroxide), by application (automotive, consumer electronics, grid storage), by region (Asia Pacific, EU, North America), and segment forecasts, 2024-2030", Adv. Mater., 116 (2023). 
  5. D. L. Thompson, J. M. Hartley, S. M. Lambert, M. Shiref, G. D. J. Harper, E. Kendrick, P. Anderson, K. S. Ryder, L. Gaines and A. P. Abbott, "The importance of design in lithium ion battery recycling - A critical review", Green Chem., 22, 7585-7603 (2020).  https://doi.org/10.1039/D0GC02745F
  6. Investor Presentation_August 2023, https://www.lme.com, November 29 (2023). 
  7. J. B. Dunn, L. Gaines, J. C. Kelly, C. James, and K. G. Gallagher, "The significance of Li-son batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction", Energy Environ. Sci., 8, 158-168 (2015).  https://doi.org/10.1039/C4EE03029J
  8. E. A. Olivetti, G. Ceder, G. G. Gaustad, and X. Fu, "Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals", Joule, 1, 229-243, (2017).  https://doi.org/10.1016/j.joule.2017.08.019
  9. Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, and G. Ceder, "Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization", Chem. Rev., 121, 1623-1669 (2021).  https://doi.org/10.1021/acs.chemrev.0c00767
  10. Y. Zhang, H. Wang, W. Li, and C. Li, "Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries", eTransportation, 2, 100031 (2019). 
  11. A. Wolowicz and Z. Hubicki, "The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions", Chem. Eng. J., 197, 493-508 (2012).  https://doi.org/10.1016/j.cej.2012.05.047
  12. A Dabrowski, "Adsorption-from theory to practice", Adv. Colloid Interface Sci., 93, 135-224 (2001).  https://doi.org/10.1016/S0001-8686(00)00082-8
  13. Y. An, W. Zhang, X. Zhang, Y. Zhong, L. Ding, Y. Hao, M. White, Z. Chen, Z. An, and X. Wang, "Adsorption recycling and high-value reutilization of heavy-metal ions from wastewater: As a high-performance anode lithium battery", Langmuir, 39, 12324-12335 (2023).  https://doi.org/10.1021/acs.langmuir.3c01275
  14. F. Fu and Q. Wang, "Removal of heavy metal ions from wastewaters: A review", J. Environ., 92, 407-418 (2011). 
  15. L. Qalyoubi, A. Al-Othman, and S. Al-Asheh, "Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: Fundamentals and classification of membranes", Case Stud. Chem. Environ. Eng., 3, 100086 (2021). 
  16. S. Babel and T. A. Kurniawan, "Low-cost adsorbents for heavy metals uptake from contaminated water: A review", J. Hazard. Mater., 97, 219-243 (2003).  https://doi.org/10.1016/S0304-3894(02)00263-7
  17. H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, and Q. Zhang, "Critical review in adsorption kinetic models", Sci. A, 10, 716-724 (2009). 
  18. W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S. H. Ho, and P. Show, "A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application", J. Clean. Prod., 296, 12658 (2021). 
  19. D. Fila, Z. Hubicki, and D. Kolodynska, "Recovery of metals from waste nickel-metal hydride batteries using multifunctional Diphonix resin", Adsorption (Boston), 25, 367-382 (2019).  https://doi.org/10.1007/s10450-019-00013-9
  20. K. C. Khulbe and T. Matsuura, "Removal of heavy metals and pollutants by membrane sorption techniques", Appl. Surf. Sci., 8, 19 (2018). 
  21. T. S. Vo, M. Mohsin Hossain, H. M. Jeong, and K. Kim, "Heavy metal removal applications using adsorptive membranes", Nano Convergence, 7, 36 (2020). 
  22. X. Fan, C. Song, X. Lu, Y. Shi, S. Yang, F. Zheng, Y. Huang, K. Liu, H. Wang, and Q. Li, "Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2", J. Alloys Compd., 863, 158775 (2021). 
  23. K. Yoo, "Lithium Ion Battery Recycling Industry in South Korea", Resour. Recycl., 32, 13-20 (2023).  https://doi.org/10.7844/kirr.2023.32.1.13
  24. Resources Recycling Research Center, https://www.kigam.re.kr/main, October 12 (2023). 
  25. V. Gunarathne, A. U. Rajapaksha, M. Vithanage, D. S. Alessi, R. Selvasembian, M. Naushad, S. You, P. Oleszczuk, and Y. S. Ok, "Hydrometallurgical processes for heavy metals recovery from industrial sludges", Crit. Rev. Environ. Sci. Technol., 52, 1022-1062 (2020). 
  26. Y. Song, L. He, Z. Zhao, and X. Liu, "Separation and recovery of lithium from Li3PO4 leaching liquor using solvent extraction with saponified D2EHPA", Sep. Purif., 229, 11582 (2019). 
  27. N. Peeters, K. Binnemans, and S. Riano, "Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction", Green Chem., 24, 2839-2852 (2022).  https://doi.org/10.1039/D1GC03776E
  28. J. Tytgat, "The Recycling Efficiency of Li-ion EV batteries according to the European Commission Regulation, and the relation with the End-of-Life Vehicles Directive recycling rate", World Electr. Veh., 6, 1039-1047 (2013).  https://doi.org/10.3390/wevj6041039
  29. D. L. Thompson, J. M. Hartley, S. M. Lambert, M. Shiref, G. D. J. Harper, E. Kendrick, P. Anderson, K. S. Ryder, L. Gaines, and A. P. Abbott, "The importance of design in lithium ion battery recycling - A critical review", Green Chem., 22, 7585-7603 (2020).  https://doi.org/10.1039/D0GC02745F
  30. E. Yoo, U. Lee, J. C. Kelly, and M. Wang, "Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery", Resour Conserv Recycl., 196, 107040 (2023). 
  31. J. Y. NA, M. S. Koo, Y. H. La, and S. R. Son, "Method for recovering active metal of lithium secondary battery", US Patent 20210028515A1, January 28 (2021). 
  32. C. Quintana, O. Cybulski, B. Mikulak-Klucznik, T. Klucznik, and B. A. Grzybowski, "One-pot, three-phase recycling of metals from Li-Ion batteries in rotating, concentric-liquid reactors", Adv. Mater., 35, 2211946 (2023).