DOI QR코드

DOI QR Code

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu (School of Civil Engineering, Dalian University of Technology) ;
  • Li Tang (School of Electrical Engineering, University of South China) ;
  • Dongsheng Li (State key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Wei Shen (College of Civil Engineering and Architecture, Guangxi University)
  • Received : 2022.03.23
  • Accepted : 2023.12.22
  • Published : 2024.01.25

Abstract

Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Keywords

Acknowledgement

The authors are grateful for the financial support from the National Natural Science Foundation of China (NSFC) under Grant Nos. 52278294; the NSFCunder Grant Nos. 51778104; the National Key Research and Development Program of China (Project No. 2017YFC0703410)

References

  1. Asadollahi, A. and Khazanovich, L. (2019), "Numerical investigation of the effect of heterogeneity on the attenuation of shear waves in concrete", Ultrasonics, 91, 34-44. https://doi.org/10.1016/j.ultras.2018.07.011 
  2. Beard, M., Lowe, M. and Cawley, P. (2003), "Ultrasonic guided waves for inspection of grouted tendons and bolts", J. Mater. Civil Eng., 15(3), 212-218. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(212) 
  3. Bocchini, P., Marzani, A. and Viola, E. (2011), "Graphical user interface for guided acoustic waves", J. Comput. Civil Eng., 25(3), 202-210. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000081 
  4. De Barros, S., Gama, A.L., Rousseau, M. and Collet, B. (2004), "Characterization of bonded plates with Lamb and SH waves using a quasi-static approximation", Latin Am. J. Solids Struct., 1(4), 379-399. 
  5. Du, G., Kong, Q., Wu, F., Ruan, J. and Song, G. (2016), "An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror", Smart Mater. Struct., 25(3), 037002. https://doi.org/10.1088/0964-1726/25/3/037002 
  6. El Najjar, J. and Mustapha, S. (2020), "Understanding the guided waves propagation behavior in timber utility poles", J. Civil Struct. Health Monitor., 10, 793-813. https://doi.org/10.1007/s13349-020-00417-0 
  7. Fink, M. (1992), Time reversal of ultrasonic fields: Part I-Basic principles: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, ITUCER. 
  8. Frojd, P. and Ulriksen, P. (2017), "Frequency selection for coda wave interferometry in concrete structures", Ultrasonics, 80, 1-8. https://doi.org/10.1016/j.ultras.2017.04.012 
  9. Gresil, M. and Giurgiutiu, V. (2015), "Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model", J. Intell. Mater. Syst. Struct., 26(16), 2151-2169. https://doi.org/10.1177/1045389X14549870 
  10. Guan, R., Lu, Y., Duan, W. and Wang, X. (2017), "Guided waves for damage identification in pipeline structures: A review", Struct. Control Health Monitor., 24(11), e2007. https://doi.org/10.1002/stc.2007 
  11. Hay, T.R. and Rose, J.L. (2002), "Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe", Sensors Actuators A: Phys., 100(1), 18-23. https://doi.org/10.1016/S0924-4247(02)00044-4 
  12. Hong, X., Song, G., Ruan, J., Zhang, Z., Wu, S. and Liu, G. (2016), "Active monitoring of pipeline tapered thread connection based on time reversal using piezoceramic transducers", Smart Struct. Syst., Int. J., 18(4), 643-662. https://doi.org/10.12989/sss.2016.18.4.643 
  13. Huang, L., Zeng, L., Lin, J. and Luo, Z. (2018), "An improved time reversal method for diagnostics of composite plates using Lamb waves", Compos. Struct., 190, 10-19. https://doi.org/10.1016/j.compstruct.2018.01.096 
  14. Ing, R. and Fink, M. (1998), "Self-focusing and time recompression of Lamb waves using a time reversal mirror", Ultrasonics, 36(1-5), 179-186. https://doi.org/10.1016/S0041-624X(97)00100-5 
  15. Kuhn, M., Dobert, F. and Gessner, K. (2006), "Numerical investigation of the effect of heterogeneous permeability distributions on free convection in the hydrothermal system at Mount Isa, Australia", Earth Planet. Sci. Lett., 244(3-4), 655-671. https://doi.org/10.1016/j.epsl.2006.02.041 
  16. Li, D. and Liu, H. (2019), "Detection of sleeve grouting connection defects in fabricated structural joints based on ultrasonic guided waves", Smart Mater. Struct., 28(8), 085033. https://doi.org/10.1088/1361-665X/ab29b0 
  17. Li, Z., Zheng, L., Chen, C., Long, Z. and Wang, Y. (2019), "Ultrasonic detection method for grouted defects in grouted splice sleeve connector based on wavelet pack energy", Sensors, 19(7), 1642. https://doi.org/10.3390/s19071642 
  18. Li, S., Liu, X., Ma, Y., Zhang, L. and Feng, H. (2021), "Influence of grouted sleeve and concrete strength of fabricated shear wall on acoustic emission detection method for sleeve compactness", J. Build. Eng., 43, 102541. https://doi.org/10.1016/j.jobe.2021.102541 
  19. Liu, H., Qi, Y., Chen, Z., Tong, H., Liu, C. and Zhuang, M. (2021), "Ultrasonic inspection of grouted splice sleeves in precast concrete structures using elastic reverse time migration method", Mech. Syst. Signal Process., 148, 107152. https://doi.org/10.1016/j.ymssp.2020.107152 
  20. Ma, Y., Li, S., Wu, Y., Wang, D. and Liu, M. (2019), "Acoustic emission testing method for the sleeve grouting compactness of fabricated structure", Constr. Build. Mater., 221, 800-810. https://doi.org/10.1016/j.conbuildmat.2019.06.124 
  21. Michaels, T.E., Michaels, J.E. and Ruzzene, M. (2011), "Frequency-wavenumber domain analysis of guided wavefields", Ultrasonics, 51(4), 452-466. https://doi.org/10.1016/j.ultras.2010.11.011 
  22. Mitra, M. and Gopalakrishnan, S. (2016), "Guided wave based structural health monitoring: A review", Smart Mater. Struct., 25(5), 053001. https://doi.org/10.1088/0964-1726/25/5/053001 
  23. Mustapha, S., Ye, L., Wang, D. and Lu, Y. (2012), "Debonding detection in composite sandwich structures based on guided waves", AIAA J., 50(8), 1697-1706. https://doi.org/10.2514/1.J051274 
  24. Mustapha, S., Lu, Y., Li, J. and Ye, L. (2014), "Damage detection in rebar-reinforced concrete beams based on time reversal of guided waves", Struct. Health Monitor., 13(4), 347-358. https://doi.org/10.1177/1475921714521268 
  25. Na, W.B., Kundu, T. and Ehsani, M.R. (2003), "Lamb waves for detecting delamination between steel bars and concrete", Comput.-Aided Civil Infrastr. Eng., 18(1), 58-63. https://doi.org/10.1111/1467-8667.t01-1-00299 
  26. Philippidis, T. and Aggelis, D. (2005), "Experimental study of wave dispersion and attenuation in concrete", Ultrasonics, 43(7), 584-595. https://doi.org/10.1016/j.ultras.2004.12.001 
  27. Planes, T. and Larose, E. (2013), "A review of ultrasonic Coda Wave Interferometry in concrete", Cement Concrete Res., 53, 248-255. https://doi.org/10.1016/j.cemconres.2013.07.009 
  28. Qiu, L. and Yuan, S. (2011), "A phase synthesis time reversal impact imaging method for on-line composite structure monitoring", Smart Struct. Syst., Int. J., 8(3), 303-320. https://doi.org/10.12989/sss.2011.8.3.303 
  29. Rose, J. (2014), Ultrasonic waves in solid media, Cambridge University Press, Cambridge, UK. 
  30. Saitoh, T. and Ishiguro, A. (2021), "Surface crack detection in a thin plate using time reversal analysis of SH guided waves", Struct. Eng. Mech., Int. J., 80(3), 243-251. https://doi.org/10.12989/sem.2021.80.3.243 
  31. Seco, F. and Jimenez, A.R. (2012), "Modelling the generation and propagation of ultrasonic signals in cylindrical waveguides", Ultrasonic Waves, 1-28. 
  32. Sohn, H., Park, H.W., Law, K.H. and Farrar, C.R. (2007), "Combination of a time reversal process and a consecutiv outlier analysis for baseline-free damage diagnosis", J. Intell. Mater. Syst. Struct., 18(4), 335-346. https://doi.org/10.1177/1045389X0606629 
  33. Stephane, M. (1999), A wavelet tour of signal processing, Elsevier 
  34. Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: A review", J. Sound Vib., 295(3-5), 753-780. https://doi.org/10.1016/j.jsv.2006.01.020 
  35. Sun, H. and Zhu, J. (2020), "Nondestructive evaluation of steel-concrete composite structure using high-frequency ultrasonic guided wave", Ultrasonics, 103, 106096. https://doi.org/10.1016/j.ultras.2020.106096 
  36. Sutin, A., Johnson, P. and TenCate, J. (2003). "Development of nonlinear time reversed acoustics (NLTRA) for applications to crack detection in solids", Proceedings of the 5th World Congress on Ultrasonics. 
  37. Tullini, N. and Minghini, F. (2016), "Grouted sleeve connections used in precast reinforced concrete construction-Experimental investigation of a column-to-column joint", Eng. Struct., 127, 784-803. https://doi.org/10.1016/j.engstruct.2016.09.021 
  38. Wang, Q., Yuan, S., Hong, M. and Su, Z. (2015), "On time reversal-based signal enhancement for active lamb wave-based damage identification", Smart Struct. Syst., Int. J., 15(6), 1463-1479. https://doi.org/10.12989/sss.2015.15.6.1463 
  39. Wilcox, P., Lowe, M. and Cawley, P. (2001), "The effect of dispersion on long-range inspection using ultrasonic guided waves", NDT & E Int., 34(1), 1-9. https://doi.org/10.1016/S0963-8695(00)00024-4 
  40. Wu, D., Liang, S., Guo, Z., Zhu, X. and Fu, Q. (2016), "The development and experimental test of a new pore-forming grouted precast shear wall connector", KSCE J. Civil Eng., 20, 1462-1472. https://doi.org/10.1007/s12205-015-0071-3 
  41. Xu, K., Ta, D., Moilanen, P. and Wang, W. (2012), "Mode separation of Lamb waves based on dispersion compensation method", J. Acoust. Soc. Am., 131(4), 2714-2722. https://doi.org/10.1121/1.3685482 
  42. Xue, C., Su, C., Yu, M., Xu, H. and Ye, J. (2021), "Experimental Study on the Thermal-Mechanical Properties and Degradation of Sleeve Grouting Material at Elevated Temperatures", J. Mater. Civil Eng., 33(2), 04020453. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003493 
  43. Yao, F., Ji, Y., Tong, W., Li, H.X. and Liu, G. (2021), "Sensing technology based quality control and warning systems for sleeve grouting of prefabricated buildings", Automat. Constr., 123, 103537. https://doi.org/10.1016/j.autcon.2020.103537 
  44. Zhang, Y., Li, D. and Zheng, X. (2019), "Detection and location of bolt group looseness using ultrasonic guided wave", Smart Struct. Syst., Int. J., 24(3), 293-301. https://doi.org/10.12989/sss.2019.24.3.293 
  45. Zhang, W., Wang, J., Zhang, J., Cao, Y., Qin, P. and Yi, W. (2020), "Experimental study on post-fire performance of half grouted sleeve connection with construction defect", Constr. Build. Mater., 244, 118165. https://doi.org/10.1016/j.conbuildmat.2020.118165 
  46. Zheng, M., Ma, H., Lyu, Y., He, C. and Lu, C. (2019), "On the dispersion of cylinder guided waves propagating in a multilayer composite hollow cylinder made of anisotropic materials", Aerosp. Sci. Technol., 95, 105432. https://doi.org/10.1016/j.ast.2019.105432 
  47. Zhu, Y., Zeng, X., Deng, M., Han, K. and Gao, D. (2018), "Detection of nonlinear Lamb wave using a PVDF comb transducer", Ndt & E Int., 93, 110-116. https://doi.org/10.1016/j.ndteint.2017.09.012