DOI QR코드

DOI QR Code

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells

혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가

  • HYEONGSIK SHIN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JINWOO LEE (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • SIHYUK CHOI (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 신형식 (국립금오공과대학교 기계공학과) ;
  • 이진우 (국립금오공과대학교 기계공학과) ;
  • 최시혁 (국립금오공과대학교 기계공학과)
  • Received : 2023.12.13
  • Accepted : 2024.02.05
  • Published : 2024.02.28

Abstract

The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Keywords

Acknowledgement

이 연구는 금오공과대학교 대학 학술연구비로 지원되었습니다(202103770001).

References

  1. H. Bai, Y. Zhang, J. Chu, Q. Zhou, H. Lan, and J. Zhou, "Oxygen electrode PrBa0.5Sr0.5Co1.5Fe0.5O5+δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ with different composite proportions for proton-conducting solid oxide electrolysis cells", ACS Applied Materials & Interfaces, Vol. 15, No. 32, 2023, pp. 38581-38591, doi: https://doi.org/10.1021/acsami.3c07638. 
  2. A. Kirubakaran, S. Jain, and R. K. Nema, "A review on fuel cell technologies and power electronic interface", Renewable and Sustainable Energy Reviews, Vol. 13, No. 9, 2009, pp. 24 30-2440, doi: https://doi.org/10.1016/j.rser.2009.04.004. 
  3. M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Science of The Total Environment, Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803. 
  4. F. J. A. Loureiro, N. Nasani, G. S. Reddy, N. R. Munirathnam, and D. P. Fagg, "A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells", Journal of Power Sources, Vol. 438, 2019, pp. 226991, doi: https://doi.org/10.1016/j.jpowsour.2019.226991. 
  5. N. Wang, C. Tang, L. Du, R. Zhu, L. Xing, Z. Song, B. Yuan, L. Zhao, Y. Aoki, and S. Ye, "Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives", Advanced Energy Materials, Vol. 12, No. 34, 2022, pp. 2201882, doi: https://doi.org/10.1002/aenm.202201882. 
  6. J. Kim, S. Sengodan, S. Kim, O. Kwon, Y. Bu, and G. Kim, "Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage", Renewable and Sustainable Energy Reviews, Vol. 109, 2019, pp. 606 -618, doi: https://doi.org/10.1016/j.rser.2019.04.042. 
  7. D. Hu, J. Kim, H. Niu, L. M. Daniels, T. D. Manning, R. Chen, B. Liu, R. Feetham, J. B. Claridgea, and M. J. Rosseinsky, "High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material", Journal of Materials Chemistry A, Vol. 10, No. 5, 2022, pp. 2559-2566, doi: https://doi.org/10.1039/D1TA07113K. 
  8. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. O'Hayre, "Readily processed protonic ceramic fuel cells with high performance at low temperatures", Science, Vol. 349, No. 6254, 2015, pp. 1321-1326, doi: https://doi.org/10.1126/science.aab3987. 
  9. S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, and A. K. Azad, "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells", Renewable and Sustainable Energy Reviews, Vol. 79, 2017, pp. 750-764, doi: https://doi.org/10.1016/j.rser.2017.05.147. 
  10. D. K. Lim, H. N. Im, B. Singh, and S. J. Song, "Investigations on electrochemical performance of a proton-conducting ceramic-electrolyte fuel cell with La0.8Sr0.2MnO3 cathode", Journal of The Electrochemical Society, Vol. 162, No. 6, 2015, pp. F547, doi: https://doi.org/10.1149/2.0551506jes. 
  11. J. Jing, Z. Lei, C. Wang, Z. Zheng, H. Wang, P. Zhang, Z. Yang, and S. Peng, "Boosting performance of a protonic ceramic fuel cell by the incorporation of active nano-structured layers", ACS Sustainable Chemistry & Engineering, Vol. 11, No. 28, 2023, pp. 10303-10310, doi: https://doi.org/10.1021/acssuschemeng.3c00706. 
  12. G. Li, Y. Zhang, Y. Ling, B. He, J. Xu, and L. Zhao, "Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells", International Journal of Hydrogen Energy, Vol. 41, No. 9, 2016, pp. 5074-5083, doi: https://doi.org/10.1016/j.ijhydene.2016.01.068. 
  13. M. S. Wang, J. X. Wang, C. R. He, Y. J. Xue, H. Miao, Q. Wang, and W. G. Wang, "A novel composite cathode La0.6Sr0.4CoO3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for intermediate temperature solid oxide fuel cells", Ceramics International, Vol. 41, No. 3, Pt. B, 2015, pp. 5017-5025, doi: https://doi.org/10.1016/j.ceramint.2014.12.069. 
  14. M. Wang, C. Su, Z. Zhu, H. Wang, and L. Ge, "Composite cathodes for protonic ceramic fuel cells: rationales and materials", Composites Part B: Engineering, Vol. 238, 2022, pp. 109881, doi: https://doi.org/10.1016/j.compositesb.2022.109881. 
  15. A. Seong, D. Jeong, M. Kim, S. Choi, and G. Kim, "Performance comparison of composite cathode: mixed ionic and electronic conductor and triple ionic and electronic conductor with BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for highly efficient protonic ceramic fuel cells", Journal of Power Sources, Vol. 530, 2022, pp. 231241, doi: https://doi.org/10.1016/j.jpowsour.2022.231241. 
  16. T. H. Wan, M. Saccoccio, C. Chen, and F. Ciucci, "Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools", Electrochimica Acta, Vol. 184, 2015, pp. 483-499, doi: https://doi.org/10.1016/j.electacta.2015.09.097. 
  17. Y. S. Yoo, Y. Namgung, A. Bhardwaj, and S. J. Song, "A facile combustion synthesis route for performance enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a robust cathode material for IT-SOFC", Journal of the Korean Ceramic Society, Vol. 56, No. 5, 2019, pp. 497-505, doi: https://doi.org/10.4191/kcers.2019.56.5.05. 
  18. S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H. I. Ji, and S. M. Haile, "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells", Nature Energy, Vol. 3, 2018, pp. 202-210, doi: https://doi.org/10.1038/s41560-017-0085-9. 
  19. C. Rossignol, J. M. Ralph, J. M. Bae, and J. T. Vaughey, "Ln1-xSrxCoO3 (Ln=Gd,Pr) as a cathode for intermediate-temperature solid oxide fuel cells", Solid State Ionics, Vol. 175, No. 1-4, 2004, pp. 59-61, doi: https://doi.org/10.1016/j.ssi.2004.09.021. 
  20. Z. Sun, E. Fabbri, L. Bi, and E. Traversa, "Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition", Journal of the American Ceramic Society, Vol. 95, No. 2, 2012, pp. 627-635, doi: https://doi.org/10.1111/j.1551-2916.2011.04795.x. 
  21. I. Cho, J. Yun, B. Seong, J. Kim, S. H. Choi, H. I. Ji, and S. Choi, "Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells", Journal of Energy Chemistry, Vol. 88, 2024, pp. 1-9, doi: https://doi.org/10.1016/j.jechem.2023.09.004.