DOI QR코드

DOI QR Code

A Study on the Risk Assessment and Improvement Methods Based on Hydrogen Explosion Accidents of a Power Plant and Water Electrolysis System

발전소 및 수전해 시스템의 수소 폭발 사고 사례 기반 위험성 평가 및 개선 방안 연구

  • MIN JAE JEON (Department of Safety Engineering, Incheon National University) ;
  • DAE JIN JANG (Department of Safety Engineering, Incheon National University) ;
  • MIN CHUL LEE (Department of Safety Engineering, Incheon National University)
  • 전민재 (인천대학교 안전공학과) ;
  • 장대진 (인천대학교 안전공학과) ;
  • 이민철 (인천대학교 안전공학과)
  • Received : 2024.01.31
  • Accepted : 2024.02.19
  • Published : 2024.02.28

Abstract

This study addresses the escalating issue of worldwide hydrogen gas accidents, which has seen a significant increase in occurrences. To comprehensively evaluate the risks associated with hydrogen, a two approach was employed in this study. Firstly, a qualitative risk assessment was conducted using the bow-tie method. Secondly, a quantitative consequence analysis was carried out utilizing the areal locations of hazardous atmospheres (ALOHA) model. The study applied this method to two incidents, the hydrogen explosion accident occurred at the Muskingum River power plant in Ohio, USA, 2007 and the hydrogen storage tank explosion accident occurred at the K Technopark water electrolysis system in Korea, 2019. The results of the risk assessments revealed critical issues such as deterioration of gas pipe, human errors in incident response and the omission of important gas cleaning facility. By analyzing the cause of accidents and assessing risks quantitatively, the effective accident response plans are proposed and the effectiveness is evaluated by comparing the effective distance obtained by ALOHA simulation. Notably, the implementation of these measures led to a significant 54.5% reduction in the risk degree of potential explosions compared to the existing risk levels.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(연구 번호: 00236869, 300 MW급(H급) 가스터빈 50% 수소혼소 변환 기술개발 및 실증).

References

  1. Ministry of Trade, Industry and Energy, "Hydrogen economy revitalization roadmap", Ministry of Trade, Industry and Energy, 2019. Retrieved from https://www.motie.go.kr/kor/article/ATCLf724eb567/210222/view.
  2. Ministry of Trade, Industry and Energy, "Comprehensive measures for hydrogen safety management", Ministry of Trade, Industry and Energy, 2019. Retrieved from https://www.motie.go.kr/kor/article/ATCLf724eb567/210274/view.
  3. J. S. Lim, H. W. Lee, Y. S. Hong, K. B. Lee, G. J. Yong, and H. B. Kwon, "Development on fuel economy test method for hydrogen fuel cell vehicles", Journal of Hydrogen and New Energy, Vol. 21, No. 3, 2010, pp. 207-213. Retrieved from https://koreascience.kr/article/JAKO201030853092578.page. 1030853092578.page
  4. Y. Hames, K. Kaya, E. Baltacioglu, and A. Turksoy, "Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles", International Journal of Hydrogen Energy, Vol. 43, No. 23, 2018, pp. 10810-10821, doi: https://doi.org/10.1016/j.ijhydene.2017.12.150.
  5. A. Veziroglu and R. Macario, "Fuel cell vehicles: state of the art with economic and environmental concerns", International Journal of Hydrogen Energy, Vol. 36, No. 1, 2011, pp. 25-43,doi: https://doi.org/10.1016/j.ijhydene.2010.08.145.
  6. Y. Manoharan, S. E. Hosseini, B. Butler, H. Alzhahrani, B. T. F. Senior, T. Ashuri, and J. Krohn, "Hydrogen fuel cell vehicles; current status and future prospect", Applied Sciences, Vol. 9, No. 11, 2019, pp. 2296, doi: https://doi.org/10.3390/app9112296.
  7. H. T. Hwang and A. Varma, "Hydrogen storage for fuel cell vehicles", Current Opinion in Chemical Engineering, Vol. 5, 2014, pp. 42-48, doi: https://doi.org/10.1016/j.coche.2014.04.004.
  8. G. Romeo, F. Borello, G. Correa, and E. Cestino, "ENFICA-FC: design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen", International Journal of Hydrogen Energy, Vol. 38, No. 1, 2013, pp. 469-479, doi: https://doi.org/10.1016/j.ijhydene.2012.09.064.
  9. T. H. Bradley, B. A. Moffitt, D. N. Mavris, and D. E. Parekh, "Development and experimental characterization of a fuel cell powered aircraft", Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 793-801, doi: https://doi.org/10.1016/j.jpowsour.2007.06.215.
  10. I. Yilmaz, M. Ilbas, M. Tastan, and C. Tarhan, "Investigation of hydrogen usage in aviation industry", Energy Conversion and Management, Vol. 63, 2012, pp. 63-69, doi: https://doi.org/10.1016/j.enconman.2011.12.032.
  11. M. Y. El-Sharkh, M. Tanrioven, A. Rahman, and M. S. Alam, "Impact of hydrogen production on optimal economic operation of a grid-parallel PEM fuel cell power plant", Journal of Power Sources, Vol. 153, No. 1, 2006, pp. 136-144, doi:https://doi.org/10.1016/j.jpowsour.2005.03.187.
  12. N. E. Park and H. W. Kim, "Analysis of R&D investment for hydrogen and fuel cell", Journal of Hydrogen and New Energy, Vol. 21, No. 2, 2010, pp. 143-148. Retrieved from https://koreascience.kr/article/JAKO201027463260138.page. 1027463260138.page
  13. D. J. Jang, S. Y. Kim, and M. C. Lee, "Property based Quantitative Risk Assessment of Hydrogen Compared with Methane, Ethane, Propane and Butane", Transactions of the Korean Society of Mechanical Engineers-B, Vol. 46, No. 2, 2022, pp. 103-114, doi: https://doi.org/10.3795/KSME-B.2022.46.2.103.
  14. J. Y. Lee, J. Lee, and H. Song, "A study on the analysis of risk factors for hydrogen fuel stations based on quantitative risk assessment", Journal of the Korean Institute of Gas, Vol. 24, No. 6, 2020, pp. 70-76, doi: https://doi.org/10.7842/kigas.2020.24.6.70.
  15. B. Park, Y. Kim, and I. J. Hwang, "Risk assessment of explosion accidents in hydrogen fuel-cell rooms using experimental investigations and computational fluid dynamics simulations", Fire, Vol. 6, No. 10, 2023, pp. 390, doi:https://doi.org/10.3390/fire6100390.
  16. S. Kang, Y. Huh, and J. Moon, "A study on safety improvement for packaged hydrogen refueling station by risk assessment", Journal of Hydrogen and New Energy, Vol. 28, No. 6, 2017, pp. 635-641. Retrieved from https://kiss.kstudy.com/Detail/Ar?key=3570324.
  17. S. Y. Jeong, H. K. Park, and M. C. Lee, "Accident impact assessment using the ALOHA program for the application of hydrogen and ammonia as fuels of a combined cycle power plant", Transactions of the Korean Society of Mechanical Engineers-B, Vol. 47, No. 12, 2023, pp. 647-661, doi: https://doi.org/10.3795/KSME-B.2023.47.12.647.
  18. H. Park and M. Lee, "Consequence analysis on the leakage accident of hydrogen fuel in a combined cycle power plant: based on the effect of regional environmental features", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 698-711, doi: https://doi.org/10.7316/JHNE.2023.34.6.698.
  19. C. H. Tae, H. S. Lee, C. H. Byun, J. M. Yang, C. Park, and J. W. Ko, "A study on risk analysis of manufacturing process using the bow-tie method", Journal of the Korean Institute of Gas, Vol. 17, No. 3, 2013, pp. 33-38, doi: http://dx.doi.org/10.7842/kigas.2013.17.3.33.
  20. B. D. Ehrhart, D. M. Brooks, A. B. Muna, and C. B. LaFleur, "Risk assessment of hydrogen fuel cell electric vehicles in tunnels", Fire Technology, Vol. 56, 2019, pp. 891-912, doi:https://doi.org/10.1007/s10694-019-00910-z.
  21. D. H. Seong, K. W. Rhie, T. H. Kim, D. S. Oh, Y. D. Oh, D. H. Seo, Y. G. Kim, and E. J. Kim, "Quantitative safety assessment for hydrogen station", Journal of the Korean Society of Safety, Vol. 27, No. 3, 2012, pp. 111-116, doi: https://doi.org/10.14346/JKOSOS.2012.27.3.111.
  22. D. H. Kim, S. M. Lee, C. H. Joe, S. K. Kang, and Y. S. Huh, "A study on the quantitative risk assessment of mobile hydrogen refueling station", Journal of Hydrogen and New Energy, Vol. 31, No. 6, 2020, pp. 605-613, doi: https://doi.org/10.7316/KHNES.2020.31.6.605.
  23. Y. S. Byun, "A study on safety improvement for mobile hy drogen refueling station by HAZOP analysis", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 299-30 7, doi: https://doi.org/10.7316/KHNES.2021.32.5.299.
  24. S. H. Kim, "A review of HAZID/bowtie methodology and its improvement", Journal of the Society of Naval Architects of Korea, Vol. 59, No. 3, 2022, pp. 164-172, doi: https://doi.org/10.3744/SNAK.2022.59.3.164.
  25. H. S. Lee, T. H. Lee, K. S. Park, and J. G. Kim, "A study on the evaluation of effects of chemical accident toxicity using CARIS & ALOHA", Journal of the Korean Society for Environmental Technology, Vol. 20, No. 1, 2019, pp. 8-15, doi: https://doi.org/10.26511/JKSET.20.1.2.
  26. H. S. Kim and B. H. Jeon, "Analysis of impact zone of quantitative risk assessment based on accident scenarios by meteorological factors", Journal of Korean Society of Environmental Engineers, Vol. 39, No. 12, 2017, pp. 685-688, doi:https://doi.org/10.4491/KSEE.2017.39.12.685.
  27. WHA International, "Case study: power plant hydrogen explosion", WHA International, 2022. Retrieved from https://wha-international.com/case-study-power-plant-hydrogen-explosion/.
  28. Korea Gas Safety Corporation (KGS), "Facility/technical/inspection code for manufacture of water electrolysis facility (KGS AH271 2022)", KGS Code, 2022. Retrieved from https://cyber.kgs.or.kr/kgscode.eng.codeSearch.view.ex.do?pubFldCd=03&pblcCd=AH271_221104&stDayY=2008&stDayM=01&rtDayY=2024&rtDayM=02.
  29. Korea Occupational Safety and Health Agency (KOSHA), "Technical guidelines for the identification of worst-case scenarios and alternative paths (P-107-2020)", KOSHA, 2020. Retrived from https://kosha.or.kr/kosha/data/guidanceP.do.