DOI QR코드

DOI QR Code

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions

Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과

  • Je Hong Park (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Si Beom Yu (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Tae Kwang An (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Byeong Jun Kim (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Jeong Ho Ryu (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 박제홍 (한국교통대학교 반도체신소재공학과) ;
  • 유시범 (한국교통대학교 반도체신소재공학과) ;
  • 안태광 (한국교통대학교 반도체신소재공학과) ;
  • 김병준 (한국교통대학교 전자공학과) ;
  • 유정호 (한국교통대학교 반도체신소재공학과)
  • Received : 2024.01.30
  • Accepted : 2024.02.13
  • Published : 2024.02.29

Abstract

In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.

수소에너지 생산을 위한 물분해 시스템의 효율을 향상시키기 위해서는, 수소발생반응(HER)과 산소발생반응(OER) 각각에서 촉매로 인한 전기화학적 반응에서의 높은 과전압의 감소가 수반되어야 한다. 그 중에서도 전이금속 기반의 화합물들은 현재 상용되고 있는 백금 등의 귀금속을 대체할 촉매 재료로써 주목받고 있다. 본 연구에서는, 저렴한 금속 다공성 소재인 니켈폼(Ni foam)을 지지체로 사용하고, 수열합성 공정을 통해 Fe-doped β-Ni(OH)2 마이크로결정을 합성하였다. 또한 OER 특성을 향상시키기 위하여 Mo을 동시도핑하여 합성된 Fe-Mo co-doped β-Ni(OH)2 마이크로결정의 형상, 결정구조 및 수전해 특성의 변화를 관찰하였으며, 상용 수전해 시스템의 촉매로서의 적용가능성을 검토하였다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C2010162).

References

  1. Y. Jung, T.L. Doan, T.N. Nguyen and T. Kim, "Research and development trends in seawater electrolysis systems and catalyst", Appl. Chem. Eng. 34(6) (2023) 567. 
  2. B.L. Salvi and K.A. Subramanian, "Sustainable development of road transportation sector using hydrogen energy system", Renew. Sustain. Energy Rev. 51 (2015) 1132. 
  3. M.A. Pellow, C.J.M. Emmott, C.J. Barnhart and S.M. Benson, "Hydrogen or batteries for grid storage? A net energy analysis", Energy Environ. Sci. 8 (2015) 1938. 
  4. J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert and T. Tynjala, "Cost benefits of optimizing hydrogen storage and methanation capacities for power-to-gas plants in dynamic operation", Appl. Energy 257 (2020) 113967. 
  5. M. El-Shafie, "Hydrogen production by water electrolysis tech-nologies: A review", Results Eng. 20 (2023) 101426. 
  6. G. Liu, "Oxygen evolution reaction electrocatalysts for seawater splitting: A review", J. Electroanal. Chem. 923 (2022) 116802. 
  7. Y. Zhou and H.J. Fan, "Progress and challenge of amorphous catalysts for electrochemical water splitting", ACS Mater. Lett. 3 (2021) 136. 
  8. S.-C. Ke, R. Chen, G.-H. Chen and X.-L. Ma, "Mini review on electrocatalyst design for seawater splitting: recent progress and perspectives", Energy Fuels 35 (2021) 12948. 
  9. T. Kou, S. Wang, J.S. Hauser, M. Chen, S.R.J. Oliver, Y. Ye, J. Guo and Y. Li, "Ni foam-suported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction", ACS Energy Lett. 4 (2019) 622. 
  10. A. Hameed, M. Batool, Z. Liu, M.A. Nadeem and R. Jin, "Layered double hydroxide-derived nanomaterials for efficient electrocatalytic water splitting: Recent progress and future perspective", ACS Energy Lett. 7 (2022) 3311. 
  11. J.H. Park, S.B. Yu, S. Jeong, B.J. Kim, K.M. Kim and J.H. Ryu, "Synthesis of Fe-doped β-Ni(OH)2 microcrystals and their oxygen evolution reactions", J. Korean Cryst. Growth Cryst. Technol. 33(5) (2023) 196. 
  12. K. Lee, S. Kang, J.H. Ryu, H. Jeon, M. Kim, Y.-K. Kim, T. Song, H. Han, S. Mhin and K.M. Kim, "Surface-modified carbon nanotubes with ultrathin Co3O4 layer for enhanced oxygen evolution reaction", ACS Appl. Mater. Interfaces 15 (2023) 58377. 
  13. J. Guo, K. Wang, H. Zhang and H. Zhang, "Enhanced electrocatalytic activity of Mo-doped NiFe layered double hydroxide nanosheet arrays for the hydrogen evolution reaction", ACS Appl. Nano Mater. 6 (2023) 379. 
  14. L. Wei, M. Du, R. Zhao, F. Lv, L. Li, L. Zhang and D. Zhou, "High-valence Mo doping for highly promoted water oxidation of NiFe (oxy)hydroxide", J. Mater. Chem. A 10 (2022) 23790. 
  15. B. You and Y. Sun, "Innovative strategies for Electrocatalytic water splitting", ACS. Chem. Res. 51 (2018) 1571.