DOI QR코드

DOI QR Code

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim (Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Minwoo Kim (Department of Medical and Digital Engineering, College of Engineering, Hanyang University) ;
  • Yongwoo Jang (Department of Medical and Digital Engineering, College of Engineering, Hanyang University)
  • 투고 : 2023.06.20
  • 심사 : 2023.07.12
  • 발행 : 2024.03.01

초록

Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.

키워드

과제정보

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI22C1973000022).

참고문헌

  1. Achanta, S. and Jordt, S. E. (2017) TRPA1: acrolein meets its target. Toxicol. Appl. Pharmacol. 324, 45-50. https://doi.org/10.1016/j.taap.2017.03.007
  2. Andre, E., Campi, B., Materazzi, S., Trevisani, M., Amadesi, S., Massi, D., Creminon, C., Vaksman, N., Nassini, R., Civelli, M., Baraldi, P. G., Poole, D. P., Bunnett, N. W., Geppetti, P. and Patacchini, R. (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest. 118, 2574-2582.
  3. Bahnasi, Y. M., Wright, H. M., Milligan, C. J., Dedman, A. M., Zeng, F., Hopkins, P. M., Bateson, A. N. and Beech, D. J. (2008) Modulation of TRPC5 cation channels by halothane, chloroform and propofol. Br. J. Pharmacol. 153, 1505-1512. https://doi.org/10.1038/sj.bjp.0707689
  4. Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008) Biological effects of essential oils--a review. Food Chem. Toxicol. 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  5. Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J. and Patapoutian, A. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857. https://doi.org/10.1016/S0896-6273(04)00150-3
  6. Bang, S., Kim, K. Y., Yoo, S., Kim, Y. G. and Hwang, S. W. (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur. J. Neurosci. 26, 2516-2523. https://doi.org/10.1111/j.1460-9568.2007.05882.x
  7. Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I. and Julius, D. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269-1282. https://doi.org/10.1016/j.cell.2006.02.023
  8. Borhani Haghighi, A., Motazedian, S., Rezaii, R., Mohammadi, F., Salarian, L., Pourmokhtari, M., Khodaei, S., Vossoughi, M. and Miri, R. (2010) Cutaneous application of menthol 10% solution as an abortive treatment of migraine without aura: a randomised, double-blind, placebo-controlled, crossed-over study. Int. J. Clin. Pract. 64, 451-456. https://doi.org/10.1111/j.1742-1241.2009.02215.x
  9. Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. and Schiestl, F. (2019) The role of volatiles in plant communication. Plant J. 100, 892-907. https://doi.org/10.1111/tpj.14496
  10. Bujak, J. K., Kosmala, D., Szopa, I. M., Majchrzak, K. and Bednarczyk, P. (2019) Inflammation, cancer and immunity-implication of TRPV1 channel. Front. Oncol. 9, 1087.
  11. Caceres, A. I., Brackmann, M., Elia, M. D., Bessac, B. F., del Camino, D., D'Amours, M., Witek, J. S., Fanger, C. M., Chong, J. A., Hayward, N. J., Homer, R. J., Cohn, L., Huang, X., Moran, M. M. and Jordt, S. E. (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl. Acad. Sci. U. S. A. 106, 9099-9104. https://doi.org/10.1073/pnas.0900591106
  12. Carde, R. T. and Millar, J. G. (2009) Chapter 195 - Pheromones. In Encyclopedia of Insects (2nd ed.) (V. H. Resh and R. T. Carde, Eds.), pp. 766-772. Academic Press, San Diego.
  13. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. and Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824. https://doi.org/10.1038/39807
  14. Chen, Y., Wu, X., Yang, X., Liu, X., Zeng, Y. and Li, J. (2021) Melatonin antagonizes ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway. Environ. Sci. Pollut. Res. Int. 28, 59858-59867. https://doi.org/10.1007/s11356-021-14945-9
  15. Ciciliato, M. P., de Souza, M. C., Tarran, C. M., de Castilho, A. L. T., Vieira, A. J. and Rozza, A. L. (2022) Anti-inflammatory effect of vanillin protects the stomach against ulcer formation. Pharmaceutics 14, 755.
  16. Cocchiara, J., Letizia, C. S., Lalko, J., Lapczynski, A. and Api, A. M. (2005) Fragrance material review on cinnamaldehyde. Food Chem. Toxicol. 43, 867-923. https://doi.org/10.1016/j.fct.2004.09.014
  17. Colbert, H. A., Smith, T. L. and Bargmann, C. I. (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259-8269. https://doi.org/10.1523/JNEUROSCI.17-21-08259.1997
  18. Coleridge, H. M. and Coleridge, J. C. (1994) Pulmonary reflexes: neural mechanisms of pulmonary defense. Annu. Rev. Physiol. 56, 69-91. https://doi.org/10.1146/annurev.ph.56.030194.000441
  19. Coleridge, J. C. and Coleridge, H. M. (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev. Physiol. Biochem. Pharmacol. 99, 1-110.
  20. Conklin, D. J., Haberzettl, P., Jagatheesan, G., Kong, M. and Hoyle, G. W. (2017) Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein. Toxicol. Appl. Pharmacol. 324, 61-72. https://doi.org/10.1016/j.taap.2016.08.028
  21. Cornett, P. M., Matta, J. A. and Ahern, G. P. (2008) General anesthetics sensitize the capsaicin receptor transient receptor potential V1. Mol. Pharmacol. 74, 1261-1268. https://doi.org/10.1124/mol.108.049684
  22. Delay-Goyet, P. and Lundberg, J. M. (1991) Cigarette smoke-induced airway oedema is blocked by the NK1 antagonist, CP-96,345. Eur. J. Pharmacol. 203, 157-158. https://doi.org/10.1016/0014-2999(91)90808-4
  23. DelloStritto, D. J., Connell, P. J., Dick, G. M., Fancher, I. S., Klarich, B., Fahmy, J. N., Kang, P. T., Chen, Y. R., Damron, D. S., Thodeti, C. K. and Bratz, I. N. (2016) Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction. Basic Res. Cardiol. 111, 21.
  24. Du, E. J., Ahn, T. J., Choi, M. S., Kwon, I., Kim, H. W., Kwon, J. Y. and Kang, K. (2015) The mosquito repellent citronellal directly potentiates drosophila TRPA1, facilitating feeding suppression. Mol. Cells 38, 911-917. https://doi.org/10.14348/molcells.2015.0215
  25. Dussor, G. and Cao, Y. Q. (2016) TRPM8 and migraine. Headache 56, 1406-1417. https://doi.org/10.1111/head.12948
  26. Edris, A. E. (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res. 21, 308-323. https://doi.org/10.1002/ptr.2072
  27. Eilers, H., Cattaruzza, F., Nassini, R., Materazzi, S., Andre, E., Chu, C., Cottrell, G. S., Schumacher, M., Geppetti, P. and Bunnett, N. W. (2010) Pungent general anesthetics activate transient receptor potential-A1 to produce hyperalgesia and neurogenic bronchoconstriction. Anesthesiology 112, 1452-1463. https://doi.org/10.1097/ALN.0b013e3181d94e00
  28. Escalera, J., von Hehn, C. A., Bessac, B. F., Sivula, M. and Jordt, S.-E. (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J. Biol. Chem. 283, 24136-24144. https://doi.org/10.1074/jbc.M710280200
  29. Facchinetti, F., Amadei, F., Geppetti, P., Tarantini, F., Di Serio, C., Dragotto, A., Gigli, P. M., Catinella, S., Civelli, M. and Patacchini, R. (2007) Alpha,beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am. J. Respir. Cell Mol. Biol. 37, 617-623. https://doi.org/10.1165/rcmb.2007-0130OC
  30. Fan, A. M. and Ting, D. (2014) Pheromones. In Encyclopedia of Toxicology (3rd ed.) (P. Wexler, Ed.), pp. 898-901. Academic Press, Oxford.
  31. Feng, Z., Li, W., Ward, A., Piggott, B. J., Larkspur, E. R., Sternberg, P. W. and Xu, X. Z. (2006) A C. elegans model of nicotine-dependent behavior: regulation by TRP family channels. Cell 127, 621-633. https://doi.org/10.1016/j.cell.2006.09.035
  32. Fouad, A. A. and Al-Melhim, W. N. (2018) Vanillin mitigates the adverse impact of cisplatin and methotrexate on rat kidneys. Hum. Exp. Toxicol. 37, 937-943. https://doi.org/10.1177/0960327117745694
  33. Fouw, J. D. (1995) Acetaldehyde (Environmental Health Criteria 167). World Health Organization, Geneva.
  34. Franks, N. P. (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370-386. https://doi.org/10.1038/nrn2372
  35. Franks, N. P. and Lieb, W. R. (1988) Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333, 662-664. https://doi.org/10.1038/333662a0
  36. Geppetti, P., Bertrand, C., Baker, J., Yamawaki, I., Piedimonte, G. and Nadel, J. A. (1993) Ruthenium red, but not capsazepine reduces plasma extravasation by cigarette smoke in rat airways. Br. J. Pharmacol. 108, 646-650. https://doi.org/10.1111/j.1476-5381.1993.tb12855.x
  37. Ghanim, A. M. H., Younis, N. S. and Metwaly, H. A. (2021) Vanillin augments liver regeneration effectively in Thioacetamide induced liver fibrosis rat model. Life Sci. 286, 120036.
  38. Grace, M. S., Baxter, M., Dubuis, E., Birrell, M. A. and Belvisi, M. G. (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br. J. Pharmacol. 171, 2593-2607. https://doi.org/10.1111/bph.12538
  39. Han, Y., Luo, A., Kamau, P. M., Takomthong, P., Hu, J., Boonyarat, C., Luo, L. and Lai, R. (2021) A plant-derived TRPV3 inhibitor suppresses pain and itch. Br. J. Pharmacol. 178, 1669-1683. https://doi.org/10.1111/bph.15390
  40. Hashimoto, M., Takahashi, K. and Ohta, T. (2023) Inhibitory effects of linalool, an essential oil component of lavender, on nociceptive TRPA1 and voltage-gated Ca(2+) channels in mouse sensory neurons. Biochem. Biophys. Rep. 34, 101468.
  41. Huber, G. L., First, M. W. and Grubner, O. (1991) Marijuana and tobacco smoke gas-phase cytotoxins. Pharmacol. Biochem. Behav. 40, 629-636. https://doi.org/10.1016/0091-3057(91)90374-B
  42. Inoue, T. and Bryant, B. P. (2005) Multiple types of sensory neurons respond to irritating volatile organic compounds (VOCs): calcium fluorimetry of trigeminal ganglion neurons. Pain 117, 193-203. https://doi.org/10.1016/j.pain.2005.06.012
  43. Iwasaki, Y., Tanabe, M., Kobata, K. and Watanabe, T. (2008) TRPA1 agonists--allyl isothiocyanate and cinnamaldehyde--induce adrenaline secretion. Biosci. Biotechnol. Biochem. 72, 2608-2614. https://doi.org/10.1271/bbb.80289
  44. Jang, Y., Lee, W. J., Hong, G. S. and Shim, W. S. (2015) Red ginseng extract blocks histamine-dependent itch by inhibition of H1R/TRPV1 pathway in sensory neurons. J. Ginseng Res. 39, 257-264. https://doi.org/10.1016/j.jgr.2015.01.004
  45. Jang, Y., Lee, Y., Kim, S. M., Yang, Y. D., Jung, J. and Oh, U. (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch. Pharm. Res. 35, 1823-1830. https://doi.org/10.1007/s12272-012-1016-8
  46. Jin, L., Jagatheesan, G., Guo, L., Nystoriak, M., Malovichko, M., Lorkiewicz, P., Bhatnagar, A., Srivastava, S. and Conklin, D. J. (2019) Formaldehyde induces mesenteric artery relaxation via a sensitive transient receptor potential ankyrin-1 (TRPA1) and endothelium-dependent mechanism: potential role in postprandial hyperemia. Front. Physiol. 10, 277.
  47. Jones, G. R. and Parker, J. E. (2005) Pheromones. In Encyclopedia of Analytical Science (2nd ed.) (P. Worsfold, A. Townshend and C. Poole, Eds.), pp. 140-149. Elsevier, Oxford.
  48. Kelemen, B., Lisztes, E., Vladar, A., Hanyicska, M., Almassy, J., Olah, A., Szollosi, A. G., Penzes, Z., Posta, J., Voets, T., Biro, T. and Toth, B. I. (2020) Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem. Pharmacol. 174, 113826.
  49. Kichko, T. I., Kobal, G. and Reeh, P. W. (2015a) Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L812- L820. https://doi.org/10.1152/ajplung.00164.2015
  50. Kichko, T. I., Niedermirtl, F., Leffler, A. and Reeh, P. W. (2015b) Irritant volatile anesthetics induce neurogenic inflammation through TRPA1 and TRPV1 channels in the isolated mouse trachea. Anesth. Analg. 120, 467-471. https://doi.org/10.1213/ANE.0000000000000568
  51. Kim, M., Kim, H., Park, T., Ahn, B. J., Lee, S., Lee, M., Lee, J. h., Oh, U. and Jang, Y. (2023) Rapid quantitative analysis of tobacco smoking in saliva using a TRPA1 ion channel-mediated bioelectronic tongue inspired by the human sensory system. Sens. Actuators B Chem. 393, 134149.
  52. Korinek, M., Handoussa, H., Tsai, Y. H., Chen, Y. Y., Chen, M. H., Chiou, Z. W., Fang, Y., Chang, F. R., Yen, C. H., Hsieh, C. F., Chen, B. H., El-Shazly, M. and Hwang, T. L. (2021) Anti-inflammatory and antimicrobial volatile oils: fennel and cumin inhibit neutrophilic inflammation via regulating calcium and MAPKs. Front. Pharmacol. 12, 674095.
  53. Kunkler, P. E., Ballard, C. J., Pellman, J. J., Zhang, L., Oxford, G. S. and Hurley, J. H. (2014) Intraganglionic signaling as a novel nasalmeningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants. PLoS One 9, e103086.
  54. Kurhanewicz, N., McIntosh-Kastrinsky, R., Tong, H., Ledbetter, A., Walsh, L. and Farraj, A. and Hazari, M. (2017) TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicol. Appl. Pharmacol. 324, 51-60. https://doi.org/10.1016/j.taap.2016.10.008
  55. Kwon, Y., Kim, S. H., Ronderos, D. S., Lee, Y., Akitake, B., Woodward, O. M., Guggino, W. B., Smith, D. P. and Montell, C. (2010) Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr. Biol. 20, 1672-1678. https://doi.org/10.1016/j.cub.2010.08.016
  56. Laude, E. A., Morice, A. H. and Grattan, T. J. (1994) The antitussive effects of menthol, camphor and cineole in conscious guinea-pigs. Pulm. Pharmacol. 7, 179-184. https://doi.org/10.1006/pulp.1994.1021
  57. Lee, S., Kim, M., Ahn, B. J. and Jang, Y. (2023) Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: a perspective review. J. Hazard. Mater. 455, 131555.
  58. Li, C., Zhang, H., Wei, L., Liu, Q., Xie, M., Weng, J., Wang, X., Chung, K. F., Adcock, I. M., Chen, Y. and Li, F. (2022) Role of TRPA1/TRPV1 in acute ozone exposure induced murine model of airway inflammation and bronchial hyperresponsiveness. J. Thorac. Dis. 14, 2698-2711. https://doi.org/10.21037/jtd-22-315
  59. Li, F., Guo, C. J., Huang, C. C., Yu, G., Brown, S. M., Xu, S. and Liu, Q. (2015) Transient receptor potential A1 activation prolongs isoflurane induction latency and impairs respiratory function in mice. Anesthesiology 122, 768-775. https://doi.org/10.1097/ALN.0000000000000607
  60. Li, J., Chen, Y., Chen, Q. Y., Liu, D., Xu, L., Cheng, G., Yang, X., Guo, Z. and Zeng, Y. (2019) Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice. Environ. Pollut. 247, 586-594. https://doi.org/10.1016/j.envpol.2019.01.091
  61. Li, M., Li, Q., Yang, G., Kolosov, V. P., Perelman, J. M. and Zhou, X. D. (2011) Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy Clin. Immunol. 128, 626-34.e1-5. https://doi.org/10.1016/j.jaci.2011.04.032
  62. Li, M. C., Perelman, J. M., Kolosov, V. P. and Zhou, X. D. (2012) Mechanisms of mucus hypersecretion in airway of rats induced by synergies between cold air and cigarette smoke inhalation and intervention effects of drugs. Zhonghua Yi Xue Za Zhi 92, 2283-2287.
  63. Lin, J., Taggart, M., Borthwick, L., Fisher, A., Brodlie, M., Sassano, M. F., Tarran, R. and Gray, M. A. (2021) Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Sci. Rep. 11, 9643.
  64. Lin, W., Ogura, T., Margolskee, R. F., Finger, T. E. and Restrepo, D. (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J. Neurophysiol. 99, 1451-1460. https://doi.org/10.1152/jn.01195.2007
  65. Lin, Y. S., Hsu, C. C., Bien, M. Y., Hsu, H. C., Weng, H. T. and Kou, Y. R. (2010) Activations of TRPA1 and P2X receptors are important in ROS-mediated stimulation of capsaicin-sensitive lung vagal afferents by cigarette smoke in rats. J. Appl. Physiol. (1985) 108, 1293-1303. https://doi.org/10.1152/japplphysiol.01048.2009
  66. Ling, Y. H., Chen, S. P., Fann, C. S., Wang, S. J. and Wang, Y. F. (2019) TRPM8 genetic variant is associated with chronic migraine and allodynia. J. Headache Pain 20, 115.
  67. Liu, H., Liu, Q., Hua, L. and Pan, J. (2018) Inhibition of transient receptor potential melastatin 8 alleviates airway inflammation and remodeling in a murine model of asthma with cold air stimulus. Acta Biochim. Biophys. Sin. (Shanghai) 50, 499-506. https://doi.org/10.1093/abbs/gmy033
  68. Liu, S. C., Lu, H. H., Cheng, L. H., Chu, Y. H., Lee, F. P., Wu, C. C. and Wang, H. W. (2015) Identification of the cold receptor TRPM8 in the nasal mucosa. Am. J. Rhinol. Allergy 29, e112-e116. https://doi.org/10.2500/ajra.2015.29.4202
  69. Lubbert, M., Kyereme, J., Schobel, N., Beltran, L., Wetzel, C. H. and Hatt, H. (2013) Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons. PLoS One 8, e77998.
  70. Lu, Z., Li, C. M., Qiao, Y., Yan, Y. and Yang, X. (2008) Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air 18, 77-83. https://doi.org/10.1111/j.1600-0668.2008.00524.x
  71. Lundberg, J. M. and Saria, A. (1983) Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature 302, 251-253. https://doi.org/10.1038/302251a0
  72. Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F. and Patapoutian, A. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545. https://doi.org/10.1038/nature05544
  73. Macpherson, L. J., Geierstanger, B. H., Viswanath, V., Bandell, M., Eid, S. R., Hwang, S. and Patapoutian, A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929-934. https://doi.org/10.1016/j.cub.2005.04.018
  74. Matsunami, H. and Buck, L. B. (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775-784. https://doi.org/10.1016/S0092-8674(00)80537-1
  75. Matta, J. A., Cornett, P. M., Miyares, R. L., Abe, K., Sahibzada, N. and Ahern, G. P. (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. U. S. A. 105, 8784-8789. https://doi.org/10.1073/pnas.0711038105
  76. McNamara, C. R., Mandel-Brehm, J., Bautista, D. M., Siemens, J., Deranian, K. L., Zhao, M., Hayward, N. J., Chong, J. A., Julius, D., Moran, M. M. and Fanger, C. M. (2007) TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. U. S. A. 104, 13525-13530. https://doi.org/10.1073/pnas.0705924104
  77. Miller, K. W., Richards, C. D., Roth, S. H. and Urban, B. W. (2002) Molecular and basic mechanisms of anaesthesia. Br. J. Anaesth. 89, 1-2. https://doi.org/10.1093/bja/aef192
  78. Mori, Y., Tanaka-Kagawa, T., Tahara, M., Kawakami, T., Aoki, A., Okamoto, Y., Isobe, T., Ohkawara, S., Hanioka, N., Azuma, K., Sakai, S. and Jinno, H. (2023) Species differences in activation of TRPA1 by resin additive-related chemicals relevant to indoor air quality. J. Toxicol. Sci. 48, 37-45. https://doi.org/10.2131/jts.48.37
  79. Mutoh, T., Taki, Y. and Tsubone, H. (2013) Desflurane but not sevoflurane augments laryngeal C-fiber inputs to nucleus tractus solitarii neurons by activating transient receptor potential-A1. Life Sci. 92, 821-828. https://doi.org/10.1016/j.lfs.2013.02.015
  80. Mutoh, T. and Tsubone, H. (2003) Hypersensitivity of laryngeal C-fibers induced by volatile anesthetics in young guinea pigs. Am. J. Respir. Crit. Care Med. 167, 557-562. https://doi.org/10.1164/rccm.200207-768BC
  81. Mutoh, T., Tsubone, H., Nishimura, R. and Sasaki, N. (1998) Responses of laryngeal capsaicin-sensitive receptors to volatile anesthetics in anesthetized dogs. Respir. Physiol. 111, 113-125. https://doi.org/10.1016/S0034-5687(97)00123-0
  82. Nair, V., Tran, M., Behar, R. Z., Zhai, S., Cui, X., Phandthong, R., Wang, Y., Pan, S., Luo, W., Pankow, J. F., Volz, D. C. and Talbot, P. (2020) Menthol in electronic cigarettes: a contributor to respiratory disease? Toxicol. Appl. Pharmacol. 407, 115238.
  83. Nassenstein, C., Kwong, K., Taylor-Clark, T., Kollarik, M., Macglashan, D. M., Braun, A. and Undem, B. J. (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. 586, 1595-1604. https://doi.org/10.1113/jphysiol.2007.148379
  84. Nassini, R., Materazzi, S., Vriens, J., Prenen, J., Benemei, S., De Siena, G., la Marca, G., Andre, E., Preti, D., Avonto, C., Sadofsky, L., Di Marzo, V., De Petrocellis, L., Dussor, G., Porreca, F., Taglialatela-Scafati, O., Appendino, G., Nilius, B. and Geppetti, P. (2012) The 'headache tree' via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135, 376-390. https://doi.org/10.1093/brain/awr272
  85. Ni, Y., Zhang, G. and Kokot, S. (2005) Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem. 89, 465-473. https://doi.org/10.1016/j.foodchem.2004.05.037
  86. Nilius, B. and Owsianik, G. (2011) The transient receptor potential family of ion channels. Genome Biol. 12, 218.
  87. Ogawa, N., Kurokawa, T., Fujiwara, K., Polat, O. K., Badr, H., Takahashi, N. and Mori, Y. (2016) Functional and structural divergence in human TRPV1 channel subunits by oxidative cysteine modification. J. Biol. Chem. 291, 4197-4210. https://doi.org/10.1074/jbc.M115.700278
  88. Patapoutian, A., Peier, A. M., Story, G. M. and Viswanath, V. (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529-539. https://doi.org/10.1038/nrn1141
  89. Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Earley, T. J., Dragoni, I., McIntyre, P., Bevan, S. and Patapoutian, A. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108, 705-715. https://doi.org/10.1016/S0092-8674(02)00652-9
  90. Perez, C. M., Hazari, M. S. and Farraj, A. K. (2015) Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure. Cardiovasc. Toxicol. 15, 69-78. https://doi.org/10.1007/s12012-014-9272-0
  91. Pires, P. W. and Earley, S. (2018) Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. Elife 7, e35316.
  92. Reiter, J., Levina, N., van der Linden, M., Gruhlke, M., Martin, C. and Slusarenko, A. J. (2017) Diallylthiosulfinate (allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 22, 1711.
  93. Salthammer, T. (2016) Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air 26, 25-38. https://doi.org/10.1111/ina.12173
  94. Saunders, C. J., Li, W. Y., Patel, T. D., Muday, J. A. and Silver, W. L. (2013) Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation. F1000Res. 2, 74.
  95. Saviuc, C. M., Drumea, V., Olariu, L., Chifiriuc, M. C., Bezirtzoglou, E. and Lazar, V. (2015) Essential oils with microbicidal and antibiofilm activity. Curr. Pharm. Biotechnol. 16, 137-151. https://doi.org/10.2174/138920101602150112151549
  96. Sawada, Y., Hosokawa, H., Matsumura, K. and Kobayashi, S. (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur. J. Neurosci. 27, 1131-1142. https://doi.org/10.1111/j.1460-9568.2008.06093.x
  97. Schaefer, E. A., Stohr, S., Meister, M., Aigner, A., Gudermann, T. and Buech, T. R. (2013) Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem. Pharmacol. 85, 426-438. https://doi.org/10.1016/j.bcp.2012.11.019
  98. Silver, W. L., Clapp, T. R., Stone, L. M. and Kinnamon, S. C. (2006) TRPV1 receptors and nasal trigeminal chemesthesis. Chem. Senses 31, 807-812. https://doi.org/10.1093/chemse/bjl022
  99. Soares, G., Bhattacharya, T., Chakrabarti, T., Tagde, P. and Cavalu, S. (2021) Exploring pharmacological mechanisms of essential oils on the central nervous system. Plants (Basel) 11, 21.
  100. Soffritti, M., Belpoggi, F., Lambertin, L., Lauriola, M., Padovani, M. and Maltoni, C. (2002) Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann. N. Y. Acad. Sci. 982, 87-105. https://doi.org/10.1111/j.1749-6632.2002.tb04926.x
  101. Takahashi, N., Kuwaki, T., Kiyonaka, S., Numata, T., Kozai, D., Mizuno, Y., Yamamoto, S., Naito, S., Knevels, E., Carmeliet, P., Oga, T., Kaneko, S., Suga, S., Nokami, T., Yoshida, J. and Mori, Y. (2011) TRPA1 underlies a sensing mechanism for O2. Nat. Chem. Biol. 7, 701-711. https://doi.org/10.1038/nchembio.640
  102. Talavera, K., Gees, M., Karashima, Y., Meseguer, V. M., Vanoirbeek, J. A., Damann, N., Everaerts, W., Benoit, M., Janssens, A., Vennekens, R., Viana, F., Nemery, B., Nilius, B. and Voets, T. (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat. Neurosci. 12, 1293-1299. https://doi.org/10.1038/nn.2379
  103. Taylor-Clark, T. E. and Undem, B. J. (2010) Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J. Physiol. 588, 423-433. https://doi.org/10.1113/jphysiol.2009.183301
  104. Ton, H. T., Phan, T. X. and Ahern, G. P. (2020) Inhibition of ligand-gated TRPA1 by general anesthetics. Mol. Pharmacol. 98, 185-191. https://doi.org/10.1124/mol.119.118851
  105. Tsubone, H., Sant'Ambrogio, G., Anderson, J. W. and Orani, G. P. (1991) Laryngeal afferent activity and reflexes in the guinea pig. Respir. Physiol. 86, 215-231. https://doi.org/10.1016/0034-5687(91)90082-T
  106. van Swinderen, B., Saifee, O., Shebester, L., Roberson, R., Nonet, M. L. and Crowder, C. M. (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 96, 2479-2484. https://doi.org/10.1073/pnas.96.5.2479
  107. Vanden Abeele, F., Kondratskyi, A., Dubois, C., Shapovalov, G., Gkika, D., Busserolles, J., Shuba, Y., Skryma, R. and Prevarskaya, N. (2013) Complex modulation of the cold receptor TRPM8 by volatile anaesthetics and its role in complications of general anaesthesia. J. Cell Sci. 126, 4479-4489. https://doi.org/10.1242/jcs.131631
  108. Vanden Abeele, F., Lotteau, S., Ducreux, S., Dubois, C., Monnier, N., Hanna, A., Gkika, D., Romestaing, C., Noyer, L., Flourakis, M., Tessier, N., Al-Mawla, R., Chouabe, C., Lefai, E., Lunardi, J., Hamilton, S., Faure, J., Van Coppenolle, F. and Prevarskaya, N. (2019) TRPV1 variants impair intracellular Ca(2+) signaling and may confer susceptibility to malignant hyperthermia. Genet. Med. 21, 441-450. https://doi.org/10.1038/s41436-018-0066-9
  109. Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., Zhu, X. and Birnbaumer, L. (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc. Natl. Acad. Sci. U. S. A. 96, 2060-2064. https://doi.org/10.1073/pnas.96.5.2060
  110. Wakamori, M., Ikemoto, Y. and Akaike, N. (1991) Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J. Neurophysiol. 66, 2014-2021. https://doi.org/10.1152/jn.1991.66.6.2014
  111. Wang, C., Fujita, T., Yasuda, H. and Kumamoto, E. (2022) Spontaneous excitatory transmission enhancement produced by linalool and its isomer geraniol in rat spinal substantia gelatinosa neurons - involvement of transient receptor potential channels. Phytomed. Plus 2, 100155.
  112. Wang, H. and Siemens, J. (2015) TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2, 178-187. https://doi.org/10.1080/23328940.2015.1040604
  113. Weng, W. H., Hsu, C. C., Chiang, L. L., Lin, Y. J., Lin, Y. S. and Su, C. L. (2013) Role of TRPV1 and P2X receptors in the activation of lung vagal C-fiber afferents by inhaled cigarette smoke in rats. Mol. Med. Rep. 7, 1300-1304. https://doi.org/10.3892/mmr.2013.1300
  114. Win-Shwe, T. T., Fujimaki, H., Arashidani, K. and Kunugita, N. (2013) Indoor volatile organic compounds and chemical sensitivity reactions. Clin. Dev. Immunol. 2013, 623812.
  115. Wu, Y., Duan, J., Li, B., Liu, H. and Chen, M. (2020) Exposure to formaldehyde at low temperatures aggravates allergic asthma involved in transient receptor potential ion channel. Environ. Toxicol. Pharmacol. 80, 103469.
  116. Xu, H., Delling, M., Jun, J. C. and Clapham, D. E. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628-635. https://doi.org/10.1038/nn1692
  117. Yamakura, T. and Harris, R. A. (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93, 1095-1101. https://doi.org/10.1097/00000542-200010000-00034
  118. Yoon, M., Ryu, M. H., Huff, R. D., Belvisi, M. G., Smith, J. and Carlsten, C. (2022) Effect of traffic-related air pollution on cough in adults with polymorphisms in several cough-related genes. Respir. Res. 23, 113.
  119. Yu, G. Y., Song, X. F., Liu, Y. and Sun, Z. W. (2014) Inhaled formaldehyde induces bone marrow toxicity via oxidative stress in exposed mice. Asian Pac. J. Cancer Prev. 15, 5253-5257. https://doi.org/10.7314/APJCP.2014.15.13.5253
  120. Zhang, P., Yang, C. and Delay, R. J. (2010) Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am. J. Physiol. Cell Physiol. 298, C1253-C1264. https://doi.org/10.1152/ajpcell.00271.2009
  121. Zhong, J., Pollastro, F., Prenen, J., Zhu, Z., Appendino, G. and Nilius, B. (2011) Ligustilide: a novel TRPA1 modulator. Pflugers Arch. 462, 841-849. https://doi.org/10.1007/s00424-011-1021-7
  122. Zhou, C., Liang, P., Liu, J., Zhang, W., Liao, D., Chen, Y., Chen, X. and Li, T. (2014) Emulsified isoflurane enhances thermal transient receptor potential vanilloid-1 channel activation-mediated sensory/nociceptive blockade by QX-314. Anesthesiology 121, 280-289. https://doi.org/10.1097/ALN.0000000000000236
  123. Zhou, Y. and Rui, L. (2010) Chapter Six - Major urinary protein regulation of chemical communication and nutrient metabolism. In Vitamins & Hormones (G. Litwack, Ed.), pp. 151-163. Academic Press.