DOI QR코드

DOI QR Code

Enhancing Anaerobic Digestion of Furfural Wastewater through Magnetite Powder Supplementation

자철석 가루 투입을 통한 푸르푸랄의 혐기성 소화 개선 효과 조사

  • Seonmin Kang (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Joonyeob Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
  • 강선민 (국립부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 이준엽 (국립부경대학교 지구환경시스템과학부(환경공학전공))
  • Received : 2024.01.02
  • Accepted : 2024.02.07
  • Published : 2024.02.29

Abstract

The effect of magnetite particles on the anaerobic digestion (AD) of furfural wastewater was investigated using sequential anaerobic batch tests. The batch tests with four 500 mL anaerobic bioreactors were performed under two conditions: FC treatment for AD of furfural without magnetite particles, and FM treatment for AD of furfural with magnetite particles. The FC bioreactors showed a decreasing methane production rate (MPR) across the sequential batches, with a final batch MPR of 11.3 ± 0.4 mL CH4/L/d, indicating the need for a methanogenesis enhancer to achieve high-rate AD of furfural. Conversely, FM bioreactors exhibited significantly higher MPR, exceeding FC values by 4-196%, with a final batch MPR of 33.5 ± 0.1 mL CH4/L/d, which was about three times higher than FC. Additionally, FM bioreactors had faster degradation rates of furfural, valeric acid, and acetic acid compared to FC, with values exceeding those in PC by 3.0, 1.14, and 2.8 times, respectively. These results demonstrate that magnetite particles can enhance the AD of furfural not only by accelerating methanogenesis but also by accelerating the anaerobic degradation of furfural and its intermediates, such as volatile fatty acids. This study provides valuable insights for developing high-rate AD systems for furfural wastewater treatment.

Keywords

Acknowledgement

본 연구는 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다(YL-WE-21-002). 또한, 이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 램프(LAMP) 사업 지원을 받아 수행된 연구입니다(No. RS-2023-000301702).

References

  1. Akobi, C., Hafez, H., Nakhla, G., 2016, The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge, Bioresource Technology, 221, 598-606. https://doi.org/10.1016/j.biortech.2016.09.067
  2. Akobi, C., Hafez, H., Nakhla, G., 2017, Impact of furfural on biological hydrogen production kinetics from synthetic lignocellulosic hydrolysate using mesophilic and thermophilic mixed cultures, Int. J. Hydrog. Energy, 42(17), 12159-12172. https://doi.org/10.1016/j.ijhydene.2017.03.173
  3. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J. B., 2009, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Water Sci. Technol., 59(5), 927-934. https://doi.org/10.2166/wst.2009.040
  4. APHA-AWWA-WEF, 2005, Standard methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, 21st Ed., American Public Health Association: Washington, DC, USA.
  5. Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., Aulenta, F., 2014, Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation, Environ. Sci. Technol., 48(13), 7536-7543. https://doi.org/10.1021/es5016789
  6. Ghasimi, D. S. M., Aboudi, K., de Kreuk, M., Zandvoort, M. H., van Lier, J. B., 2016, Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions, Chemical Engineering Journal, 295, 181-191. https://doi.org/10.1016/j.cej.2016.03.045
  7. Jung, S., Kim, M., Lee, J., Shin, J., Shin, S. G., Lee, J., 2022, Effect of magnetite supplementation on mesophilic anaerobic digestion of phenol and benzoate: Methane production rate and microbial communities, Bioresource Technology, 350.
  8. Kato, S., Hashimoto, K., Watanabe, K., 2012, Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals, Environ. Microbiol., 14(7), 1646-1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
  9. Lee, J., Koo, T., Yulisa, A., Hwang, S., 2019, Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition, J. Environ. Manag., 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038
  10. Li, Q., Liu, Y., Yang, X., Zhang, J., Lu, B., Chen, R., 2020, Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate, Chemical Engineering Journal, 396, 125366.
  11. Mao, L., Zhang, L., Gao, N., Li, A., 2013, Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam, Green Chemistry, 15(3), 727-737. https://doi.org/10.1039/c2gc36346a
  12. Prabakar, D., Suvetha K, S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., Pugazhendhi, A., 2018, Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns, J. Environ. Manag., 218, 165-180. https://doi.org/10.1016/j.jenvman.2018.03.136
  13. Qadir, M., Drechsel, P., Jimenez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O., 2020, Global and regional potential of wastewater as a water, nutrient and energy source, Nat. Resour. Forum, 44(1), 40-51. https://doi.org/10.1111/1477-8947.12187
  14. Qiu, B., Shi, J., Hu, W., Gao, J., Li, S., Chu, H., 2023, Construction of hydrothermal liquefaction system for efficient production of biomass-derived furfural: Solvents, catalysts and mechanisms, Fuel, 354, 129278.
  15. Stams, A. J., Plugge, C. M., 2009, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat. Rev. Microbiol., 7(8), 568-577. https://doi.org/10.1038/nrmicro2166
  16. Sun, H., Wang, E., Li, X., Cui, X., Guo, J., Dong, R., 2021, Potential biomethane production from crop residues in China: Contributions to carbon neutrality, Renew. Sustain. Energy Rev., 148.
  17. Tian, H., Quan, Y., Yin, Z., Yin, C., Fu, Y., 2023, Bioelectrochemical Purification of Biomass Polymer Derived Furfural Wastewater and Its Electric Energy Recovery, Polymers, 15(16).
  18. Wang, Z., Liu, Z., Noor, R. S., Cheng, Q., Chu, X., Qu, B., Zhen, F., Sun, Y., 2019, Furfural wastewater pretreatment of corn stalk for whole slurry anaerobic co-digestion to improve methane production, Sci. Total Environ., 674, 49-57. https://doi.org/10.1016/j.scitotenv.2019.04.153
  19. Xia, A., Feng, D., Huang, Y., Zhu, X., Wang, Z., Zhu, X., Liao, Q., 2022, Activated Carbon Facilitates Anaerobic Digestion of Furfural Wastewater: Effect of Direct Interspecies Electron Transfer, ACS Sustain. Chem. Eng., 10(25), 8206-8215. https://doi.org/10.1021/acssuschemeng.2c01907
  20. Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, P., Huang, X., 2019, Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi) conductive iron oxides: Effects and mechanisms, Sci. Total Environ., 695, 133876.
  21. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., Van't Riet, K., 1990, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56(6), 1875-1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990