DOI QR코드

DOI QR Code

Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids

  • 투고 : 2023.07.11
  • 심사 : 2023.08.25
  • 발행 : 2024.02.29

초록

The text highlights the growing need for eco-friendly energy storage and the potential of metal-organic frameworks (MOFs) to address this demand. Despite their promise, challenges in MOF-based energy storage include stability, reproducible synthesis, cost-effectiveness, and scalability. Recent progress in supercapacitor materials, particularly over the last decade, has aimed to overcome these challenges. The review focuses on the morphological characteristics and synthesis methods of MOFs used in supercapacitors to achieve improved electrochemical performance. Various types of MOFs, including monometallic, binary, and tri-metallic compositions, as well as derivatives like hybrid nanostructures, sulfides, phosphides, and carbon composites, are explored for their energy storage potential. The review emphasizes the quest for superior electrochemical performance and stability with MOF-based materials. By analyzing recent research, the review underscores the potential of MOF-based supercapacitors to meet the increasing demands for high power and energy density solutions in the field of energy storage.

키워드

참고문헌

  1. N. Abas, A. Kalair, and N. Khan, Futures, 2015, 69, 31-49. 
  2. M. Hook and X. Tang, Energy Policy, 2013, 52, 797-809. 
  3. S. R. Chia, S. Nomanbhay, M. Y. Ong, A. H. B. Shamsuddin, K. W. Chew, and P. L. Show, Fuel, 2022, 314, 123137. 
  4. M. A. A. M. Abdah, H. T. A. Awan, M. Mehar, M. N. Mustafa, R. Walvekar, M. W. Alam, M. Khalid, R. Umapathi, and V. Chaudhary, J. Energy Storage, 2023, 63, 106942. 
  5. G. Zhang, Y. Ge, Z. Ye, and M. Al-Bahrani, J. Energy Storage, 2023, 57, 106160. 
  6. M. M. Hasan and A. H. Chowdhury, J. Energy Storage, 2023, 58, 106327. 
  7. M. M. Rashidi, I. Mahariq, N. Murshid, S. Wongwises, O. Mahian, and M. A. Nazari, Alex. Eng. J., 2022, 61(12), 12977-12989. 
  8. A. Chaudhuri, R. Datta, M. P. Kumar, J. P. Davim, and S. Pramanik, Materials, 2022, 15(3), 1232. 
  9. A. Rahman, O. Farrok, and M. M. Haque, Renew. Sustain. Energy Rev., 2022, 161, 112279. 
  10. A. K. Rai, N. H. A. Makishah, Z. Wen, G. Gupta, S. Pandit, and R. Prasad, Fermentation, 2022, 8(4), 161. 
  11. C. C. Claudio, M. T. B. Perazzini, and H. Perazzini, Renew. Energy, 2022, 181, 304-316. 
  12. J. Twitchell, K. DeSomber, and D. Bhatnagar, J. Energy Storage, 2023, 60, 105787. 
  13. C. M. S. Kumar, S. Singh, M. K. Gupta, Y. M. Nimdeo, R. Raushan, A. V. Deorankar, T. M. A. Kumar, P. K. Rout, C. S. Chanotiya, V. D. Pakhale, and A. D. Nannaware, Sustain. Energy Technol. Assess., 2023, 55, 102905. 
  14. A. Ari, A. K. Bohre, P. Chaturvedi, M. L. Kolhe, and S. N. Singh, Techno-economic analysis of hybrid renewable energy systems-A review with case study, in Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid. Energy Systems in Electrical Engineering, Springer, Singapore, 2022, 227-264. 
  15. G. Willems, Unraveling Flashback Phenomena of Turbulent premixed Hydrogen-Natural Gas-Air Flames, Master Thesis, Delft University of Technology, 2022. 
  16. A. K. Barik, S. Jaiswal, and D. C. Das, Int. J. Sustain. Energy, 2022, 41(4), 308-322. 
  17. E. K. Stigka, J. A. Paravantis, and G. K. Mihalakakou, Renew. Sustain. Energy Rev., 2014, 32, 100-106. 
  18. J. Geng, S. Gao, X. Sun, Z. Liu, F. Zhao, and H. Hao, Energy, 2022, 253, 124159. 
  19. K. Mallon and F. Assadian, Energies, 2022, 15(2), 600. 
  20. S. Koohi-Fayegh and M. A. Rosen, J. Energy Storage, 2020, 27, 101047. 
  21. I. E. Atawi, A. Q. Al-Shetwi, A. M. Magableh, and O. H. Albalawi, Batteries, 2022, 9(1), 29. 
  22. S. Prabhu, M. Maruthapandi, A. Durairaj, S. A. Kumar, J. H. T. Luong, R. Ramesh, and A. Gedanken, ACS Appl. Energy Mater., 2023, 6(3), 1321-1331. 
  23. M. Horn, J. MacLeod, M. Liu, J. Webb, and N. Motta, Econ. Anal. Policy, 2019, 61, 93-103. 
  24. J. Liu, J.-G. Zhang, Z. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V. V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, and B. Schwenzer, Adv. Funct. Mater., 2013, 23(8), 929-946. 
  25. W. Cao, J. Zhang, and H. Li, Energy Storage Mater., 2020, 26, 46-55. 
  26. X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, and W. Wang, Adv. Mater., 2014, 26(45), 7649-7653. 
  27. Y. Wu and C. Cao, Sci. China Mater., 2018, 61, 1517-1526. 
  28. J. Ni, Y. Huang, and L. Gao, J. Power Sources, 2013, 223, 306-311. 
  29. M. Gao, Z. Wnag, D. G. Lek, and Q. Wang, Nano Research Energy, 2023, 2, e9120045. 
  30. Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, and H. Zhan, Nanoscale, 2018, 10, 14171-14181. 
  31. G. Xu, P. Nie, H. Dou, B. Ding, L. Li, and X. Zhang, Mater. Today, 2017, 20(4), 191-209. 
  32. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Energy Storage Mater., 2016, 2, 35-62. 
  33. F. Figueira and F. A. A. Paz, C, 2021, 7(2), 47. 
  34. J. Zhou and B. Wang, Chem. Soc. Rev., 2017, 46, 6927-6945. 
  35. J. Hu, X. Yuan, C. Wang, X. Shao, B. Yang, A. A. Razzaq, X. Zhao, Y. Lian, Z. Deng, M. Chen, and Y. Peng, Small, 2020, 16(24), 2000755. 
  36. M. F. Khan, M. A. Marwat, Abdullah, S. S. Shah, M. R. A. Karim, M. A. Aziz, Z. U. Din, S. Ali, and K. M. Adam, Sep. Purif. Technol., 2023, 310, 123101. 
  37. L. Sun, C. H. Hendon, S. S. Park, Y. Tulchinsky, R. Wan, F. Wang, A. Walsh, and M. Dinca, Chem. Sci., 2017, 8, 4450-4457. 
  38. C. Li, L. Zhang, J. Chen, X. Li, J. Sun, J. Zhu, X. Wang, and Y. Fu, Nanoscale, 2021, 13, 485-509. 
  39. H. Babaei, A. J. H. McGaughey, and C. E. Wilmer, Chem. Sci., 2017, 8, 583-589. 
  40. J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu, S. Shen, G. Tan, F. Wu, H. He, S. Lan, X. Xia, and Q. Liu, Carbon Energy, 2020, 2(2), 176-202. 
  41. K. O. Otun, S. Zong, D. Hildebrandt, and X. Liu, J. Phys. Chem. Solids, 2022, 167, 110779. 
  42. B. Li, H.-M. Wen, W. Zhou, and B. Chen, J. Phys. Chem. Lett., 2014, 5(20), 3468-3479. 
  43. A. F. Sahayaraj, H. J. Prabu, J. Maniraj, M. Kannan, M. Bharathi, P. Diwahar, and J. Salamon, J. Inorg. Organomet. Polym., 2023, 33, 1757-1781. 
  44. Y. Peng, J. Xu, J. Ma, Y. Bai, S. Cao, S. Zhang, and H. Pang, Adv. Colloid Inferface Sci., 2022, 307, 102732. 
  45. G. Xu, C. Zhu, and G. Gao, Small, 2022, 18(44), 2203140. 
  46. M. A. Marwat, B. Xie, M. Ashtar, Y. Zhu, P. Fan, and H. Zhang, Ceram. Int., 2018, 44(6), 6843-6850. 
  47. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, and C. Cheng, Adv. Mater., 2021, 33(17), 2006042. 
  48. A. C. McKinlay, R. E. Morris, P. Horcajada, G. Ferey, R. Gref, P. Couvreur, and C. Serre, Angew. Chem. Int. Ed., 2010, 49(36), 6260-6266. 
  49. S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, and K.-H. Kim, Coord. Chem. Rev., 2020, 420, 213407. 
  50. T. Rasheed, M. Bilal, A. A. Hassan, F. Nabeel, R. N. Bharagava, L. F. R. Ferreira, H. N. Tran, and H. M. N. Iqbal, Environ. Res., 2020, 185, 109436. 
  51. D. Liu, W. Gu, L. Zhou, L. Wang, J. Zhang, Y. Liu, and J. Lei, Chem. Eng. J., 2022, 427, 131503. 
  52. I. Ihsanullah, Curr. Opin. Environ. Sci. Health, 2022, 100335. 
  53. A. Elrasheedy, N. Nady, M. Bassyouni, and A. El-Shazly, Membranes, 2019, 9(7), 88. 
  54. L. Du, Biotechnol. J., 2021, 16(2), 1900424. 
  55. A. Bieniek, A. P. Terzyk, M. Wisniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, and K. Kaneko, Prog. Mater. Sci., 2021, 117, 100743. 
  56. H. Shu, T. Lai, J. Ren, X. Cui, X. Tian, Z. Yang, X. Xiao, and Y. Wang, Nanotechnology, 2022, 33, 135502. 
  57. T. Yao, H. Wang, Y. Qin, J.-W. Shi, and Y. Cheng, Compos. B: Eng., 2023, 253, 110557. 
  58. M. I. da Silva, I. R. Machado, H. E. Toma, K. Araki, L. Angnes, and J. M. Goncalves, J. Mater. Chem. A, 2022, 10 430-474. 
  59. J.-K. Sun and Q. Xu, Energy Environ. Sci., 2014, 7, 2071-2100. 
  60. S.-L. Li and Q. Xu, Energy Environ. Sci., 2013, 6, 1656-1683. 
  61. W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, and Y. Andou, J. Phys. Chem. C, 2016, 120(8), 4153-4172. 
  62. Q. Ke and J. Wang, J. Materiomics, 2016, 2(1), 37-54. 
  63. A. A. Kalam, S. Park, Y. Seo, and J. Bae, Bull. Korean Chem. Soc., 2015, 36(8), 2111-2115. 
  64. E. V. Lobiak, L. G. Bulusheva, E. O. Fedorovskaya, Y. V. Shubin, P. E. Plyusnin, P. Lonchambon, B. V. Senkovskiy, Z. R. Ismagilov, E. Flahaut, and A. V. Okotrub, Beilstein J. Nanotechnol., 2017, 8, 2669-2679. 
  65. F. J. Claire, M. A. Solomos, J. Kim, G. Wang, M. A. Siegler, M. F. Crommie, and T. J. Kempa, Nat. Commun., 2020, 11, 5524. 
  66. J. Cao, Y. Li, L. Wang, Y. Qiao, J. Li, L. Zhu, S. Zhang, X. Yan, and H. Xie, J. Alloys Compd., 2023, 936, 168262. 
  67. L. Legenstein, S. Rodriguez-Hermida, V. Rubio-Gimenez, T. Stassin, S. Hofer, M. P. Kainz, M. Fratschko, F. Carraro, P. Falcaro, R. Ameloot, and R. Resel, Adv. Mater. Interfaces, 2023, 10(12), 2202461. 
  68. Y. Ren and Y. Xu, Chem. Commun., 2023, 59, 6475-6494. 
  69. Y. K. Park, S. B. Choi, H. J. Nam, D.-Y. Jung, H. C. Ahn, K. Choi, H. Furukawa, and J. Kim, Chem. Commun., 2010, 46, 3086-3088. 
  70. H. Hayashi and Y. Hakuta, Materials, 2010, 3(7), 3794-3817. 
  71. H. Jiang, Q. Wang, H. Wang, Y. Chen, and M. Zhang, Catal. Commun., 2016, 80, 24-27. 
  72. Y.-R. Lee, J. Kim, and W.-S. Ahn, Korean J. Chem. Eng., 2013, 30, 1667-1680. 
  73. M. Diaz-Garcia and M. Sanchez-Sanchez, Microporous Mesoporous Mater., 2014, 190, 248-254. 
  74. D.-P. Qin, K.-R. Huang, G.-M. Huang, and L.-S. Cui, J. Mol. Struct., 2023, 1280, 135000. 
  75. A. K. Hosseini, Y. Pourshirzad, and A. Tadjarodi, J. Solid State Chem., 2023, 317, 123676. 
  76. W. Zhang, Z. Shahnavaz, X. Yan, X. Huang, S. Wu, H. Chen, J. Pan, T. Li, and J. Wang, Inorg. Chem., 2022, 61(38), 15287-15301. 
  77. B. D. de Grenu, S. Munoz-Pina, R. de los Reyes, M. Benitez, J. E. Haskouri, P. Amoros, and J. V. Ros-Lis, ChemSusChem, 2023, 16(12), e202300123. 
  78. Y.-T. Hsieh and W.-R. Liu, Ceram. Int., 2023, 49(19), 32164-32171. 
  79. L. Hu, L. Chen, Y. Fang, A. Wang, C. Chen, and Z. Yan, Microporous Mesoporous Mater., 2018, 268, 207-215. 
  80. T. Zhao, S.-H. Li, L. Shen, Y. Wang, and X.-Y. Yang, Inorg. Chem. Commun., 2018, 96, 47-51. 
  81. W. Li, Z. Li, F. Yang, X. Fang, and B. Tang, ACS Appl. Mater. Interfaces, 2017, 9(40), 35030-35039. 
  82. A. Laybourn, J. Katrib, R. S. Ferrari-John, C. G. Morris, S. Yang, O. Udoudo, T. L. Easun, C. Dodds, N. R. Champness, S. W. Kingman, and M. Schroder, J. Mater. Chem. A, 2017, 5, 7333-7338. 
  83. N. A. Khan, I. J. Kang, H. Y. Seok, and S. H. Jhung, Chem. Eng. J., 2011, 166(3), 1152-1157. 
  84. P. T. Phan, J. Hong, N. Tran, and T. H. Le, Nanomaterials, 2023, 13(2), 352. 
  85. J. Wang, M. Rao, C. Ye, Y. Qiu, W. Su, S. Zheng, J. Fan, S. Cai, and W.-G. Zhang, RSC Adv., 2020, 10, 4621-4629. 
  86. Y. Ning, X. Lou, C. Li, X. Hu, and B. Hu, Chem. Eur. J., 2017, 23(63), 15984-15990. 
  87. C. Li, X. Hu, W. Tong, W. Yan, X. Lou, M. Shen, and B. Hu, ACS Appl. Mater. Interfaces, 2017, 9(35), 29829-29838. 
  88. H. Kennaz, A. Harat, O. Guellati, D. Y. Momodu, F. Barzegar, J. K. Dangbenon, N. Manyala, and M. Guerioune, J. Solid State Electrochem., 2018, 22, 835-847. 
  89. J.-J. Li, M.-C. Liu, L.-B. Kong, D. Wang, Y.-M. Hu, W. Han, and L. Kang, RSC Adv., 2015, 5, 41721-41728. 
  90. N. Liu, X. Liu, and J. Pan, J. Colloid Interface Sci., 2022, 606, 1364-1373. 
  91. S. Opelt, S. Turk, E. Dietzsch, A. Henschel, S. Kaskel, and E. Klemm, Catal. Commun., 2008, 9(6), 1286-1290. 
  92. X. Chen, X. Chen, E. Yu, S. Cai, H. Jia, J. Chen, and P. Liang, Chem. Eng. J., 2018, 344, 469-479. 
  93. R. Rajak, M. Saraf, P. Kumar, K. Natarajan, and S. M. Mobin, Inorg. Chem., 2021, 60(22), 16986-16995. 
  94. W. Xie, Y. Wang, J. Zhou, M. Zhang, J. Yu, C. Zhu, and J. Xu, Appl. Surface Sci., 2020, 534, 147584. 
  95. T. K. Ghosh and G. R. Rao, Dalton Trans., 2023, 52, 5943-5955. 
  96. R. Wu, D. P. Wang, X. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Yan, J. Wei, and Z. Chen, Adv. Mater., 2015, 27(19), 3038-3044. 
  97. B. Y. Guan and X. W. Lou, Small Methods, 2017, 1(7), 1700158. 
  98. B. Y. Guan, L. Yu, and X. W. Lou, Energy Environ. Sci., 2016, 9, 3092-3096. 
  99. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C, 2009, 113(30), 13103-13107. 
  100. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Science, 2011, 332, 1537-1541. 
  101. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett., 2009, 9(5), 1872-1876. 
  102. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, Acs Nano, 2010, 4(3), 1337-1344. 
  103. H. Nishihara, H. Itoi, T. Kogure, P.-X. Hou, H. Touhara, F. Okino, and T. Kyotani, Chem. Eur. J., 2009, 15(21), 5355-5363. 
  104. T. P. Mofokeng, A. K. Ipadeola, Z. N. Tetana, and K. I. Ozoemena, ACS Omega, 2020, 5(32), 20461-20472. 
  105. Y. Li, Y. Xu, Y. Liu, and H. Pang, Small, 2019, 15(36), 1902463. 
  106. D. Y. Lee, S. J. Yoon, N. K. Shrestha, S.-H. Lee, H. Ahn, and S.-H. Han, Mciroporous Mesoporous Mater., 2011, 153, 163-165. 
  107. D. Y. Lee, D. V. Shinde, E.-K. Kim, W. Lee, I.-W. Oh, N. K. Shrestha, J. K. Lee, and S.-H. Han, Microporous Mesoporous Mater., 2013, 171, 53-57. 
  108. M. Du, M. Chen, X.-G. Yang, J. Wen, X. Wang, S.-M. Fang, and C.-S. Liu, J. Mater. Chem. A, 2014, 2, 9828-9834. 
  109. Y. Pan, D. Gao, Y. Dang, P. Xu, D. Han, C. Liu, Y. Wei, and Y. Yang, Inorg. Chem. Front., 2022, 9, 5982-5993. 
  110. R. Diaz, M. G. Orcajo, J. A. Botas, G. Calleja, and J. Palma, Mater. Lett., 2012, 68, 126-128. 
  111. R. Rajak, M. Saraf, and S. M. Mobin, Inorg. Chem., 2020, 59(3), 1642-1652. 
  112. I. Hussain, S. Iqbal, T. Hussain, Y. Chen, M. Ahmad, M. S. Javed, A. AlFantazi, and K. Zhang, J. Mater. Chem. A, 2021, 9, 17790-17800. 
  113. Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, G. Cheng, H. Yang, and J. Luo, Polymers, 2019, 11(5), 821. 
  114. D. Fu, Z. Chen, C. Yu, X. Song, and W. Zhong, Prog. Nat. Sci.: Mater. Int., 2019, 29(5), 495-503. 
  115. P. Yang, X. Song, C. Jia, and H.-S. Chen, J. Ind. Eng. Chem., 2018, 62, 250-257. 
  116. G.-C. Li, P.-F. Liu, R. Liu, M. Liu, K. Tao, S.-R. Zhu, M.-K. Wu, F.-Y. Yi, and L. Han, Dalton Trans., 2016, 45, 13311-13316. 
  117. W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, and L. Guo, ACS Sustainable Chem. Eng., 2017, 5(5), 4144-4153. 
  118. A. S. Rajpurohit, N. S. Punde, and A. K. Srivastava, J. Colloid Interface Sci., 2019, 553, 328-340. 
  119. X.-G. Han, P.-F. Wang, Y.-H. Zhang, H.-Y. Liu, J.-J. Tang, G. Yang, and F.-N. Shi, Inorganica Chim. Acta, 2022, 536, 120916. 
  120. M. Aghazadeh and H. F. Rad, Ionics, 2022, 28, 2389-2396. 
  121. E. R. Ezeigwe, L. Dong, J. Wang, L. Wang, W. Yan, and J. Zhang, J. Colloid Interface Sci., 2020, 574, 140-151. 
  122. X. Xu, W. Shi, W. Liu, S. Ye, R. Yin, L. Zhang, L. Xu, M. Chen, M. Zhong, and X. Cao, J. Mater. Chem. A, 2018, 6, 24086-24091. 
  123. C. Miao, C. Zhou, H.-E. Wang, K. Zhu, K. Ye, Q. Wang, J. Yan, D. Cao, N. Li, and G. Wang, J. Power Sources, 2021, 490, 229532. 
  124. A. A. Meshram and S. M. Sontakke, Mater. Today: Proc., 2021, 46, 6201-6206. 
  125. M. S. Rahmanifar, H. Hesari, A. Noori, M. Y. Masoomi, A. Morsali, and M. F. Mousavi, Electrochim. Acta, 2018, 275, 76-86. 
  126. P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, J. Mater. Chem. A, 2015, 3, 13874-13883. 
  127. Y. Zhang, B. Lin, Y.Sun, X. Zhang, H. Yang, and J. Wang, RSC Adv., 2015, 5, 58100-58106. 
  128. S. N. Ansari, M. Saraf, A. K. Gupta, and S. M. Mobin, Chem. Asian J., 2019, 14(20), 3566-3571. 
  129. K.-Y. Zou, Y.-C. Liu, Y.-F. Jiang, C.-Y. Yu, M.-Li Yue, and Z.-X. Li, Inorg. Chem., 2017, 56(11), 6184-6196. 
  130. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Coord. Chem. Rev., 2016, 307, 361-381. 
  131. G.-C. Li, X.-N. Hua, P.-F. Liu, Y.-X. Xie, and L. Han, Mater. Chem. Phys., 2015, 168, 127-131. 
  132. Z. Sun, L. Hu, W. Ran, Y. Lu, and D. Jia, New J. Chem., 2016, 40, 1100-1103. 
  133. S. Maiti, A. Pramanik, and S. Mahanty, CrystEngComm, 2016, 18, 450-461. 
  134. L.-D. Chen, Y.-Q. Zheng, and H.-L. Zhu, J. Mater. Sci., 2018, 53, 1346-1355. 
  135. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, and S. Qiu, Inorg. Chem. Front., 2015, 2, 177-183. 
  136. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, and J. Wang, Adv. Energy Mater., 2017, 7(12), 1602391. 
  137. W. Guo, Y. Xiang, Y. Xing, S. Li, J. Li, and H. Tang, Int. J. Electrochem. Sci., 2016, 11, 9216-9227. 
  138. H. Liu, H. Guo, L. Yue, N. Wu, Q. Li, W. Yao, R. Xue, M. Wang, and W. Yang, ChemElectroChem, 2019, 6(14), 3764-3773. 
  139. D. Tian, S. Chen, W. Zhu, C. Wang, and X. Lu, Mater. Chem. Front., 2019, 3, 1653-1660. 
  140. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, and H. Zhang, J. Am. Chem. Soc., 2016, 138(22), 6924-6927. 
  141. X. Han, K. Tao, D. Wang, and L. Han, Nanoscale, 2018, 10, 2735-2741. 
  142. H. Hu, B. Y. Guan, and X. W. D. Lou, Chem, 2016, 1(1), 102-113. 
  143. S. Liu, M. Tong, G. Liu, X. Zhang, Z. Wang, G. Wang, W. Cai, H. Zhang, and H. Zhao, Inorg. Chem. Front., 2017, 4, 491-498. 
  144. J. S. Chen, C. Guan, Y. Gui, and D. J. Blackwood, ACS Appl. Mater. Interfaces, 2017, 9(1), 496-504. 
  145. C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. Huang, M. Liu, and R. Zou, J. Mater. Chem. A, 2018, 6, 4003-4012. 
  146. K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, and L. Han, Chem. Eur. J., 2018, 24(48), 12584-12591. 
  147. G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, and L. Han, RSC Adv., 2016, 6, 103517-103522. 
  148. Y. Zhang, L. Li, H. Su, W. Huang, and X. Dong, J. Mater. Chem. A, 2015, 3, 43-59. 
  149. X. Li, R. Ding, W. Shi, Q. Xu, L. Wang, H. Jiang, Z. Yang, and E. Liu, Mater. Lett., 2017, 187, 144-147. 
  150. X. Wang, H.-M. Kim, Y. Xiao, and Y.-K. Sun, J. Mater. Chem. A, 2016, 4, 14915-14931. 
  151. Y. Lu, J. Liu, X. Liu, S. Huang, T. Wang, X. Wang, C. Gu, J. Tu, and S. X. Mao, CrystEngComm, 2013, 15, 7071-7079. 
  152. J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, and Y. Li, Angew. Chem. Int. Ed., 2016, 55(41), 12854-12858. 
  153. R. Zhao, S. Gao, Y. Wu, Z.Liang, H. Zhang, W. Xia, S. Li, Y. Zhao, and R. Zou, Chem. Eur. J., 2020, 26(18), 4001-4006. 
  154. T. Tian, L. Ai, and J. Jiang, RSC Adv., 2015, 5, 10290-10295. 
  155. C. Shuai, Z. M, X. Niu, P. Zhao, Q. Dng, Y. Chen, N. Liu, and R. Guo, J. Alloys Compd., 2020, 847, 156514. 
  156. G. Qu, P. Sun, G. Xiang, J. Yin, Q. Wei, C. Wang, and X. Xu, Appl. Mater. Today, 2020, 20, 100713. 
  157. Q. Zhou, Y. Gong, and K. Tao, Electrochim. Acta, 2019, 320, 134582. 
  158. S. Gayathri, P. Arunkumar, D. Saha, and J. H. Han, J. Colloid Interface Sci., 2021, 588, 557-570. 
  159. C. Li, J. Wang, Y. Yan, P. Huo, and X. Wang, Chem. Eng. J., 2022, 446, 137108. 
  160. K. Chhetri, T. Kim, D. Acharya, A. Muthurasu, B. Dahal, R. M. Bhattarai, P. C. Lohani, I. Pathak, S. Ji, T. H. Ko, and H. Y. Kim, Chem. Eng. J., 2022, 450, 138363. 
  161. M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, and D. Maspoch, Cryst. Growth Des., 2014, 14(5), 2092-2096. 
  162. Y. Sun and H.-C. Zhou, Sci. Technol. Adv. Mater., 2015, 16(5), 054202. 
  163. J. Klinowski, F. A. A. Paz, P. Silva, and J. Rocha, Dalton Trans., 2011, 40, 321-330. 
  164. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, ..., and R. Gref, Nature Mater., 2010, 9, 172-178. 
  165. A. Asghar, N. Iqbal, and T. Noor, Polyhedron, 2020, 181, 114463. 
  166. P. Silva, S. M. F. Vilela, J. P. C. Tome, and F. A. A. Paz, Chem. Soc. Rev., 2015, 44, 6774-6803. 
  167. N. Stock and S. Biswas, Chem. Rev., 2012, 112(2), 933-969. 
  168. I. Stassen, M. Styles, G. Grenci, H. V. Gorp, W. Vanderlinden, S. D. Feyter, P. Falcaro, D. D. Vos, P. Vereecken, and R. Ameloot, Nature Mater., 2016, 15, 304-310. 
  169. N. Abid, A. M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Kahn, and M. Maqbool, Adv. Colloid Interface Sci., 2022, 300, 102597. 
  170. K. Parveen, V. Banse, and L. Ledwani, AIP Conference Proceedings, 2016, 1724(1), 020048.