DOI QR코드

DOI QR Code

Ginsenoside Rg1 promotes neurite growth of retinal ganglion cells through cAMP/PKA/CREB pathways

  • Ye-ying Jiang (Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Rong-yun Wei (Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Kai Tang (Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Zhen Wang (Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Ning-hua Tan (Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University)
  • Received : 2022.02.23
  • Accepted : 2022.05.02
  • Published : 2024.03.01

Abstract

Background: Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods: Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results: This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion: Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.

Keywords

Acknowledgement

This work was supported by the "Double First-Class" University Project (No. CPU2018GF05) of China Pharmaceutical University and the Program of Innovative Research Team of Jiangsu Province.

References

  1. Mateos-Aparicio P, Rodriguez-Moreno A. Calcium dynamics and synaptic plasticity. Adv Exp Med Biol 2020;1131:965-84. https://doi.org/10.1007/978-3-030-12457-1_38
  2. Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Curr Opin Neurobiol 2019;54:186-93. https://doi.org/10.1016/j.conb.2018.06.013
  3. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018;38(3):579-93. https://doi.org/10.1007/s10571-017-0510-4
  4. Pfenninger KH, Becky A, Helmke SM, Quiroga S. Growth-regulated proteins and neuronal plasticity. Mol Neurobiol 1991;5(2-4):143-51. https://doi.org/10.1007/BF02935543
  5. Srivastava K, Tripathi R, Mishra R. Age-dependent alterations in expression and co-localization of Pax6 and Ras-GAP in brain of aging mice. J Chem Neuroanat 2018;92:25-34.
  6. Bu F, Munshi Y, Furr JW, Min JW, Qi L, Patrizz A, Spahr ZR, Urayama A, Kofler JK, McCullough LD, et al. Activation of neuronal Ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and axonal plasticity in mice. J Neurochem 2021;157(4):1366-76. https://doi.org/10.1111/jnc.15195
  7. Liu WN, Xue XL, Xia J, Liu JT, Qi ZT. Swimming exercise reverses CUMSinduced changes in depression-like behaviors and hippocampal plasticityrelated proteins. J Affect Disord 2018;227:126-35. https://doi.org/10.1016/j.jad.2017.10.019
  8. Hansel C. Deregulation of synaptic plasticity in autism. Neurosci Lett 2019;688:58-61.
  9. Li SM, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Ab oligomers from Alzheimer's brain. J Neurochem 2020;154(6):583-97.
  10. Li H, Xue XL, Li L, Li YQ, Wang YN, Huang T, Wang YH, Meng HX, Pan BL, Niu Q. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotox Res 2020;37(4):996-1008. https://doi.org/10.1007/s12640-020-00165-5
  11. Engelmann C, Haenold R. Transcriptional control of synaptic plasticity by transcription factor NF-kB. Neural Plast 2016;2016:7027949.
  12. Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, et al. Dendritic spines: revisiting the physiological role. Prog Neuro-Psychopharmacol Biol Psychiatry 2019;92:161-93. https://doi.org/10.1016/j.pnpbp.2019.01.005
  13. Segarra-Mondejar M, Casellas-Diaz S, Ramiro-Pareta M, Muller-Sanchez C, Martorell-Riera A, Hermelo I, Reina M, Aragones J, Martinez-Estrada OM, Soriano FX. Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO J 2018;37(9):e97368.
  14. Fry LE, Fahy E, Chrysostomou V, Hui F, Tang J, Wijngaarden PV, Petrou S, Crowston JG. The coma in glaucoma: retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res 2018;65:77-92. https://doi.org/10.1016/j.preteyeres.2018.04.001
  15. Sullivan RKP, WoldeMussie E, Pow DV. Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci 2007;48(6):2782-91. https://doi.org/10.1167/iovs.06-1283
  16. Zu G, Guo J, Che NW, Zhou TT, Zhang XW, Wang GZ, Ji AL, Tian XF. Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/b-catenin pathway. Sci Rep 2016;6:38480.
  17. Li FL, Wu XQ, Li J, Niu QL. Ginsenoside Rg1 ameliorates hippocampal longterm potentiation and memory in an Alzheimer's disease model. Mol Med Rep 2016;13(6):4904-10.
  18. Li G, Zhang N, Geng F, Liu GL, Liu B, Lei X, Li G, Chen X. High-throughput metabolomics and ingenuity pathway approach reveals the pharmacological effect and targets of ginsenoside Rg1 in Alzheimer's disease mice. Sci Rep 2019;9(1):1-11.
  19. Wang XY, Zhang JT. Effects of ginsenoside Rg1 on synaptic plasticity of freely moving rats and its mechanism of action. Acta Pharmacol Sin 2001;22(7):657-62.
  20. Huang L, Liu LF, Liu J, Dou L, Wang GY, Liu XQ, Yuan QL. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons. Neural Regen Res 2016;11(2):319-25. https://doi.org/10.4103/1673-5374.177741
  21. Yu HL, Fan CQ, Yang LJ, Yu SY, Song QQ, Wang P, Mao XQ. Ginsenoside Rg1 prevents chronic stress-induced depression-like behaviors and neuronal structural plasticity in rats. Cell Physiol Biochem 2018;48(6):2470-82. https://doi.org/10.1159/000492684
  22. Zhu G, Wang Y, Li J, Wang J. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 2015;292:81-9. https://doi.org/10.1016/j.neuroscience.2015.02.031
  23. Zou LF, Yu KH, Fan Y, Cao SX, Liu LSM, Shi LR, et al. The inhibition by Guanfu base a of neuropathic pain mediated by P2Y12 receptor in dorsal root Ganglia. ACS Chem Neurosci 2019;10(3):1318-25. https://doi.org/10.1021/acschemneuro.8b00399
  24. Song L, Li L, Liu B, Yu DX, Sun FG, Guo MM, Ruan ZM, Zhang FX. Diagnostic evaluations of ultrasound and magnetic resonance imaging in mammary duct ectasia and breast cancer. Oncol Lett 2018;15(2):1698-706.
  25. Patel AK, Park KK, Hackam AS. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience 2017;343:372-83. https://doi.org/10.1016/j.neuroscience.2016.12.020
  26. Chen JK, Heckert LL. Dmrt1 expression is regulated by follicle-stimulating hormone and phorbol esters in postnatal sertoli cells. Endocrinology 2001;142(3):1167-78. https://doi.org/10.1210/endo.142.3.8021
  27. Wang GL, An TY, Lei C, Zhu XF, Yang L, Zhang LX, Zhang RH. Antidepressantlike effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR134-mediated BDNF signaling pathway in a mouse model of chronic stressinduced depression. J Ginseng Res 2022;46(3):376-86. in press. https://doi.org/10.1016/j.jgr.2021.03.005
  28. Chen MM, Yin ZQ, Zhang LY, Liao H. Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression. Chin J Nat Med 2015;13(9):667-72.
  29. Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 1995;83(2):269-78. https://doi.org/10.1016/0092-8674(95)90168-X
  30. Doster SK, Lozano AM, Aguayo AJ, Willard MB. Expression of the growthassociated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 1991;6(4):635-47. https://doi.org/10.1016/0896-6273(91)90066-9
  31. Li LZ, Yin N, Li XY, Miao YY, Cheng S, Li F, Zhao GL, Zhong SM, Wang X, Yang XL, et al. Rac1 modulates excitatory synaptic transmission in mouse retinal ganglion cells. Neurosci Bull 2019;35(4):673-87.
  32. Gan QN, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang JJ, Chen HW, Zhou CJJ. Pax6 mediates b-catenin signaling for selfrenewal and neurogenesis by neocortical radial glial stem cells. Stem Cell 2014;32(1):45-58.
  33. Feng J, Xu J. Identification of pathogenic genes and transcription factors in glaucoma. Mol Med Rep 2019;20(1):216-24.
  34. Zhang XM, Liu DTL, Chiang SWY, Choy KW, Pang CP, Lam DSC, Yam GHF. Immunopanning purification and long-term culture of human retinal ganglion cells. Mol Vis 2010;16:2867-72.
  35. Argaw A, Duff G, Boire D, Ptito M, Bouchard JF. Protein kinase A modulates retinal ganglion cell growth during development. Exp Neurol 2008;211(2):494-502. https://doi.org/10.1016/j.expneurol.2008.02.014
  36. Potasiewicz A, Holuj M, Boire D, Ptito M, Bouchard JF. 3-Furan-2-yl-Np-tolylacrylamide, a positive allosteric modulator of the a7 nicotinic receptor, reverses schizophrenia-like cognitive and social deficits in rats. Neuropharmacology 2017;113(Pt A):188-97. https://doi.org/10.1016/j.neuropharm.2016.10.002
  37. Ng SK, Wood JPM, Chidlow G, Han GG, Kittipassorn T, Peet DJ, Casson RJ. Cancer-like metabolism of the mammalian retina. Clin Exp Ophthalmol 2015;43(4):367-76.
  38. Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015;42(4):841-51.