DOI QR코드

DOI QR Code

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets

알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성

  • Received : 2023.12.26
  • Accepted : 2024.01.08
  • Published : 2024.02.28

Abstract

Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. M. S. Jang, M. J. Bamg and J. H. Kwak: Eugene Investment & Securities, (2015).
  2. Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata: Mater. Lett., 60 (2006) 3830.
  3. Z. Shen, Y. Ding and A. P. Gerlich: Crit. Rev. Solid State Mater. Sci., 45 (2020) 457.
  4. Z. Shen, J. Chen, Y. Ding, J. Hou, B. Shalchi Amirkhiz, K. Chan, A. P. Gerlich: Sci. Technol. Weld. Joining., 23 (2018) 462.
  5. Y. Zhao, C. Dong, C. Wang, S. Miao, J. Tan and Y. Yi: Metals, 10 (2020) 145.
  6. Z. Shen, Y. Chen, J. S. C. Hou, X. Yang and A. P. Gerlich: Sci. Technol. Weld. Joining., 20 (2015) 48. https://doi.org/10.1179/1362171814Y.0000000253
  7. Z. Shen, Y. Ding, J. Chen, B. S. Amirkhiz, J. Z. Wen, L. Fu and A. P. Gerlic h: J. Mater. Sc i. Tec hnol., 35 (2019) 1027.
  8. Y. Uematsu, T. Kakiuchi, Y. Tozaki and H. Kojin: Sci. Technol. Weld. Joinin., 17 (2012) 348.
  9. Z. Shen, Y. Ding, O. Gopkalo, B. Diak and A. P. Gerlich: J. Mater. Process. Technol., 252 (2018) 751. https://doi.org/10.1016/j.jmatprotec.2017.10.034
  10. R. N. Verastegui, J. A. E. Mazzaferro, C. C. P. Mazzaferro, T. R. Strohaecker and J. F. Dos Santos: Adv. Mater. Res., 1082 (2015) 123.
  11. M. D. Tier, T. S. Rosendo, J. F. Dos Santos, N. Huber., J. A. Mazzaferro, C. P. Mazzaferro and T. R. Strohaecker: J. Mater. Process. Technol., 213 (2013) 997.
  12. Y. C. Chiou, C. T. Liu and R. T. Lee: J. Mater. Process. Technol., 213 (2013) 1818.
  13. D. Bakavos, Y. Chen, L. Babout and P. Prangnell: Metall. Mater. Trans. A, 42 (2011) 1266.
  14. M. P. Mubiayi, E. T. Akinlabi and M. E. Makhatha: In: 2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies IEEE., (2017) 48.
  15. K. Kim, J. Lim and Y. M. Llim: KSCE Journal of Civil and Environmental Engineering Research., 28 (2008) 529.
  16. P. Li, S. Chen, H. Dong, H. Ji, Y. Li, X. Guo, G. Yang, X. Zhang and X. Han: J. Manuf. Processes., 49 (2020) 385.
  17. E. Fereiduni, M. Movahedi and A. H. Kokabi: J. Mater. Process. Technol., 224 (2015) 1.
  18. E. Fereiduni, M. Movahedi, A. H. Kokabi and H. Najafi: Metall. Mater. Trans. A, 48 (2017) 1744.