DOI QR코드

DOI QR Code

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim (Department of Engineering in Energy Materials, Graduate School of Silla University) ;
  • Sangmoon Park (Department of Engineering in Energy Materials, Graduate School of Silla University)
  • 투고 : 2024.01.15
  • 심사 : 2024.01.24
  • 발행 : 2024.02.27

초록

Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

키워드

과제정보

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-007).

참고문헌

  1. B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001).
  2. F. Ramadhani, M. A. Hussain, H. Mokhlis and S. Hajimolana, Renewable Sustainable Energy Rev., 76, 460 (2017).
  3. S.-J. Hao, C. Wang, T.-L. Liu, Z.-M. Mao, Z.-Q. Mao and J.-L. Wang, Int. J. Hydrogen Energy, 42, 29949 (2017).
  4. S. Hussain and L. Yangping, Energy Transitions, 4, 113 (2020).
  5. Z. Han, H. Dong, Y. Yang and Z. Yang, ACS Appl. Energy Mater., 5, 5822 (2022).
  6. K. Du, C. Song, M. Liu, T. Liu, K. Wen, H. Liao and C. Yang, Int. J. Hydrogen Energy, 50, 1133 (2024).
  7. A. R. Hanifi, M. A. Laguna-Bercero, N. K. Sandhu, T. H. Etsell and P. Sarkar, Sci. Rep., 6, 27359 (2016).
  8. Y. Dong, L. Qi, J. Li and I-W. Chen, Acta Mater., 126, 438 (2017).
  9. G. Witz, V. Shklover, W. Steurer, S. Bachegowda and H.-P. Bossmann, J. Am. Ceram. Soc., 90, 2935 (2007).
  10. M. Liu, D. Dong, R. Peng, J. Gao, J. Diwu, X. Liu and G. Meng, J. Power Sources, 180, 215 (2008).
  11. S. Park, B. L. Clark, D. A. Keszler, J. P. Bender, J. F. Wager, T. A. Reynolds and G. S. Herman, Science, 297, 65 (2002).
  12. S. Park, G. S. Herman and D. A. Keszler, J. Solid State Chem., 175, 84 (2003).
  13. S. Park, J. Solid State Chem., 182, 2456 (2009).
  14. S. P. Ratnayake, J. Ren, E. Colusso, M. Guglielmi, A. Martucci and E. D. Gaspera, Small, 17, 2101666 (2021).
  15. M. A. Becker, E. J. Radich, B. A. Bunker and P. V. Kama, J. Phys. Chem. Lett., 5, 1575 (2014).