DOI QR코드

DOI QR Code

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method

Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상

  • Il-Ryeol Yoo (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Sang-Hyun Park (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Seong-Hui Choi (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Kyung-Hoon Cho (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 유일열 (국립금오공과대학교 신소재공학과) ;
  • 박상현 (국립금오공과대학교 신소재공학과) ;
  • 최성희 (국립금오공과대학교 신소재공학과) ;
  • 조경훈 (국립금오공과대학교 신소재공학과)
  • Received : 2024.02.16
  • Accepted : 2024.02.19
  • Published : 2024.02.27

Abstract

In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Keywords

Acknowledgement

This research was supported by Kumoh National Institute of Technology (2021).

References

  1. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn and W. Jo, J. Materiomics, 2, 1 (2016). 
  2. G. Huangfu, K. Zeng, B. Wang, J. Wang, F. Xu, S. Zhang, H. Luo, D. Viehland and Y. Guo, Science, 378, 1125 (2022). 
  3. V. Annapureddy, M. S. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong and J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). 
  4. K. H. Cho, H. Y. Park, J. S. Heo and S. Priya, J. Appl. Phys., 115, 204108 (2014). 
  5. N. Setter and R. Waser, Acta Mater., 48, 151 (2000). 
  6. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). 
  7. J. Hao, W. Li, J. Zhai and H. Chen, Mater. Sci. Eng., R, 135, 1 (2019). 
  8. I. Coondoo, N. Panwar and A. Kholkin, J. Adv. Dielectr., 3, 1330002 (2013). 
  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takator, T. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84 (2004). 
  10. E. Hollenstein, D. Damjanovic and N. Setter, J. Eur. Ceram. Soc., 27, 4093 (2007). 
  11. C. Shi, J. Ma, J. Wu, X. Wang, F. Miao, Y. Huang, K. Chen, W. Wu and B. Wu, J. Alloys Compd., 846, 156245 (2020). 
  12. J. Wu, J. Appl. Phys., 127, 190901 (2020). 
  13. P. K. Panda, B. Sahoo, T. S. Thejas and M. Krishna, J. Electron. Mater., 51, 938 (2022). 
  14. X. Lv, J. Zhu, D. Xiao, X.-X. Zhang and J. Wu, Chem. Soc. Rev., 49, 671 (2020). 
  15. H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong and K. Wang, Mater. Today, 29, 37 (2019). 
  16. J. E. Garcia and F. Rubio-Marcos, J. Appl. Phys., 127, 131102 (2020). 
  17. J. Wu, D. Xiao and J. Zhu, Chem. Rev., 115, 2559 (2015). 
  18. J. Wu, X. Wang, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu and X. Lou, J. Appl. Phys., 115, 114104 (2014). 
  19. R. Zuo and J. Fu, J. Am. Ceram. Soc., 94, 1467 (2011). 
  20. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Lou and X. Wang, Dalton Trans., 43, 11759 (2014). 
  21. J. Ji, B. Fang, X. Zhao, S. Zhang, Q. Du, J. Ding and H. Luo, J. Mater. Sci. Mater. Electron., 29, 4422 (2018). 
  22. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao and J. Zhu, Adv. Mater., 28, 8519 (2016). 
  23. C. Wang, B. Fang, Y. Qu, Z. Chen, S. Zhang and J. Ding, J. Alloys Compd., 832, 153043 (2020). 
  24. Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). 
  25. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). 
  26. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang and X. Lou., ACS Appl. Mater. Interfaces, 7, 20332 (2015). 
  27. T. Zheng, W. Wu, J. Wu, J. Zhu and D. Xiao, J. Mater. Chem. C, 4, 9779 (2016). 
  28. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao and J. Zhu, Adv. Mater., 28, 8519 (2016). 
  29. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao and J. Zhu, Mater. Des., 109, 609 (2016). 
  30. X. Lv, J. Wu, S. Yang, D. Xiao and J. Zhu, ACS Appl. Mater. Interfaces, 8, 18943 (2016). 
  31. W. Yang, P. Li, S. Wu, F. Li, B. Shen and J. Zhai, Adv. Electron. Mater., 5, 1900570 (2019). 
  32. Z. Cen, Y. Yu, P. Zhao, L. Chen, C. Zhu, L. Li and X. Wang, J. Mater. Chem. C, 7, 1379 (2019). 
  33. M.-H. Zhang, K. Wang, Y.-J. Du, G. Dai, W. Sun, G. Li, D. Hu, H. C. Thong, C. Zhao, X.-Q. Xi, Z.-X. Yue and J.-F. Li, J. Am. Chem. Soc., 139, 3889 (2017). 
  34. Y. Huang, C. Zhao, B. Wu and X. Zhang, J. Eur. Ceram. Soc., 42, 2764 (2022). 
  35. T. Liu, Y. Chen, Z. Zheng, Y. Li, P. Jia and Y. Wang, Ceram. Int., 49, 25035 (2023). 
  36. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng and F.-Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). 
  37. E. Shafiee, M. D. Chermahini, A. Doostmohammadi, M. R. Nilforoushan and B. Zehipour, Ceram. Int., 45, 22203 (2019). 
  38. M. A. Bahrevar, M. D. Chermahini, M. R. Rahimipour and H. Shokrollahi, Ceram. Int., 41, 11402 (2015). 
  39. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). 
  40. Y. Pan, L. Huang, J. Feng, X. Yu, Z. Xu and Y. Chen, Ceram. Int., 48, 37085 (2022). 
  41. H. Qi, R. Zuo, J.-F. Li and L. Li, J. Eur. Ceram. Soc., 38, 5341 (2018). 
  42. C. A. Souza, J. A. Eiras and M. H. Lente, Ferroelectrics, 499, 47 (2016). 
  43. F. K. Bahanurdin, J. J. Mohamed and Z. A. Ahmad, Mater. Sci. Forum, 888, 42 (2017). 
  44. J.-H. Ji, U.-C. Moon, H.-I. Kwon and J.-H. Koh, Ceram. Int., 43, S97 (2017). 
  45. J.-H. Ji, J. Kim and J.-H. Koh, J. Alloys Compd., 698, 938 (2017). 
  46. J. Ji, X. Li, B. Fang, X. Zhao, S. Zhang, J. Ding and H. Luo, Ferroelectrics, 526, 33 (2018). 
  47. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu and X. Zhang, Adv. Mater., 30, 1705171 (2018). 
  48. N. Zhang, T. Zheng and J. Wu, ACS Omega, 5, 3099 (2020). 
  49. Y. Yue, X. Xu, M. Zhang, Z. Yan, V. Koval, R. M. Whiteley, D. Zhang, M. Palma, I. Abrahams and H. Yan, ACS Appl. Mater. Interfaces, 13, 57548 (2021). 
  50. M.-K. Lee, S.-A. Yang, J.-J. Park and G.-J. Lee, Sci. Rep., 9, 4195 (2019). 
  51. X. Lv, J. Wu, J. Zhu, D. Xiao and X. Zhang, J. Eur. Ceram. Soc., 38, 85 (2018). 
  52. M.-K. Lee, S.-D. Bu and G.-J. Lee, Energies, 12, 886 (2019). 
  53. K.-H. Cho and S. Priya, Appl. Phys. Lett., 98, 232904 (2011). 
  54. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, J. Appl. Phys., 103, 031101 (2008).