DOI QR코드

DOI QR Code

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility

무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가

  • Soolo Kim (Korea Mine Rehabilitation and Mineral Resources Corp.) ;
  • Gwan-in Bak (Korea Mine Rehabilitation and Mineral Resources Corp.) ;
  • Sang-Wook Kim (Isung Co. Ltd.) ;
  • Seung-han Baek (Korea Mine Rehabilitation and Mineral Resources Corp.)
  • Received : 2023.12.05
  • Accepted : 2024.01.03
  • Published : 2024.02.29

Abstract

An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

폐광산의 갱도 입구를 통해 고속 라이다(Light Detection And Ranging, LiDAR) 장비가 탑재된 무인이동체를 투입하여 폐광의 갱도를 형상화하기 위한 기술이 제안되었다. 직경이 1.5 m 이상인 좁은 갱도에 바닥이 슬러지 형태로 미끄럽고 장애물이 있는 환경에서 무인 이동체를 운영할 때 고려할 사항을 검토하였다. 육상환경 이동을 위해 4족 보행 로봇을 활용하였으며 항공 환경 이동을 위해 쿼드콥터 드론이 활용되었다. 수중환경의 갱도에 투입하기 위해서 수중 드론이 사용되었다. 무인 이동체를 실제 광산 현장에 투입하여 폐광 현장용 이동체가 고려해야 할 변수들을 도출하였다. 폐광산 갱도 형상화용 센서로서 2차원 영상 기반의 solid-state 라이다가 사용되었다. 방사형으로 측정되는 라이다의 특성을 고려하여 고정 경사각을 두어 회전시켜 운영하여 갱도 형상화를 위한 효율성을 높이고 동시에 장애물 감지도 같이 수행할 수 있도록 제안하였다. Solid-state 라이다를 이용하여 측정데이터로부터 센서의 자세와 로봇의 자세를 반영하여 현실 좌표계 데이터로 변환하기 위한 계산기법이 도출되었다. 라이다 센서와 무인 비행체가 결합하여 실제 현장에 투입하여 갱도 형상을 추출하였다. 마지막으로 실제 현장에서 효용성을 높이기 위한 요소를 도출하였다.

Keywords

Acknowledgement

This project was funded by Korea Mine Rehabilitation and Mineral Resources Corporation (Komir) and is currently supported by the publication grant.

References

  1. Durrant-Whyte, H. and Bailey, T., 2006, Simultaneous localization and mapping: part I, IEEE Robotics & Automation magazine, 13(2), 99-110.
  2. Fekete, S., Diederichs, M., and Lato, M. 2010, Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels, Tunnelling and Underground Space Technology, 25(5), 614-628.
  3. Garcia-Gomez, P., Royo, S., Rodrigo, N., and Casas, J.R., 2020, Geometric model and calibration method for solid-state lidar, Senosrs, 20(10), 2898.
  4. Ghosh, D., Samanta, B., and Chakravarty, D., 2017, Multi sensor data fusion for 6D pose estimation and 3D underground mine mapping using autonomous mobile robot, International Journal of Image and Data Fusion, 8(2), 173-187.
  5. Hong, G.W., Kim, S.M., and Park, J.J., 2022, A study on the calculation of cavity filling amount using ground penetrating radar and cavity shaping equipment, J. Soc. Disaster Information, 18(2), 261-268.
  6. Jeon, S.W. and Jeon, B.K., 2014, Review on the prevention and reclamation of mining induced subsidence in abandoned mine areas in the Republic of Korea, J. Korean Soc. Miner. Energy Resour. Eng., 51(1), 141-150.
  7. Kim, H.M. and Choi, Y.S., 2019, Review of Autonomous Driving Technology Utilized in Underground Mines, J. Korean Soc. Miner. Energy Resour. Eng., 56(5), 480-489.
  8. Kim, S.L., Bak, G.I., and Baek, S.H., 2021, Application of underground caivty 3d digitization and figuration technology to underground safety industry, J. Korean Soc. Miner. Energy Resour. Eng., 58(4), 364-370.
  9. Kim, S.L., Choi, J.S., Yoon, H.G., and Kim, S.W., 2022, Fabrication of three-dimensional scanning system for inspection of mineshaft using multichannel lidar, Tunnel and Underground Space 32(6), 451-463. https://doi.org/10.7474/TUS.2022.32.6.451
  10. Kim, S.L., Pak, J.H., Lee, J.S., Yang, I.J., and Kim, S.W., 2020a, Towing-type high-speed three-dimensional shaping and method for sinkholes and underground cavities, Korea Patent, 10-2205218.
  11. Kim, S.L., Yoon, H.G., and Kim, S.W., 2020b, Fabrication of three-dimensional scanning system for inspection of massive sinkhole disaster sites, J. of Korea Robotics Society, 15(4), 341-349.
  12. Kim, S.W. and Kim, S.Y., 2010, Analysis of cross-borehole pulse radar signatures measured at various tunnel angle, Exploration Geophysics, 41(1), 96-101.
  13. Neumann, T., Ferrein, A., Kallweit, S., and Scholl, I., 2014, Towards a mobile mapping robot for underground mines, Proceedings of the 2014 PRASA, RobMech and AfLaT International Joint Symposium, 27-32.
  14. Singh, S.K., Banerjee, B.P., and Raval, S., 2023, A review of laser scanning for geological and geotechnical applications in underground mining, International Journal of Mining Science and Technology, 33(2), 133-154.
  15. Singh, S.K., Raval, S., and Banerjee, B., 2021, A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner, International Journal of Mining Science and Technology, 31(2), 303-312.
  16. Tatsch, C., Bredu, J.A., Covell, D., Tulu, I.B., and Gu, Y. 2023, Rhino: An Autonomous Robot for Mapping Underground Mine Environments, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 1166-1173.
  17. Zlot, R., and Bosse, M. 2013, Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine, Field and Service Robotics, 8th International Conference, 479-493.