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MULTIPLE WEIGHTED ESTIMATES FOR MULTILINEAR
COMMUTATORS OF MULTILINEAR SINGULAR
INTEGRALS WITH GENERALIZED KERNELS

LIWEN GAO, YAN LIN, AND SHUHUI YANG

ABSTRACT. In this paper, the weighted LP boundedness of multilinear
commutators and multilinear iterated commutators generated by the mul-
tilinear singular integral operators with generalized kernels and BMO
functions is established, where the weight is multiple weight. Our results
are generalizations of the corresponding results for multilinear singular
integral operators with standard kernels and Dini kernels under certain
conditions.

1. Introduction

The multilinear singular integral operator theory is an important topic of
modern harmonic analysis. It originated from the work [1-3] of Meyer and
Coifman in the 1970s.

Before describing the main content of the theory, we give some notations
that we need to use. R"™ stands for the n-dimension Euclidean space and
C2°(R™) stands for all infinitely differentiable functions with compact support.
We denote the support of f by supp(f), the p-th power integrable function by
LP and the essentially bounded function by L*°. For ¢ > 0 and a ball B, the
ball with the same center as B and the radius crp is denoted by cB, where the
rp stands for the radius of B.

The theory mainly studies the following operator:

Definition 1.1. Suppose m € N and a function K(yo,y1,- - -,¥m) is defined
away from the diagonal yg = y; = -+ = y,, in (R")™+1. We define an m-linear
operator T from m-tuples of test functions on R™ to functions on R™ by

(1.1) T(fl,...7fm)(x):/n--- ]RnK(x7y1,...7ym)Hfj(yj)dy1~-~dym,

j=1
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where f; (j =1,...,m) € C(R") such that x ¢ N}, supp(f;).

In particular, we call K a standard m-linear Calderén-Zygmund kernel if it
satisfies the following size estimates:
A
Ok i=o lyx — wil)mm

for some A > 0 and all (yo,%1, - -, ¥m) € (R?)™+! away from the diagonal, and
smooth estimates:

(12) |K(y07y17"'7ym)‘ S

| £

Cly;—y;
(X 1=o lyr—w])mnte

for some & > 0, whenever 0 < j <m and |y; —y| < %maxogkgm ly; — Ykl

(1.3) [K o, ¥js- - Um) =K (Wos -, Yo ym)| <

Definition 1.2. Let T be an m-linear operator defined by (1.1) with a standard
m-linear Calderén-Zygmund kernel K. We say that T is a standard m-linear
Calderon-Zygmund operator if it satisfies either of the following conditions.
Given a group of numbers t1,t3,...,ty,t such that 1 < ty,t9,... ¢, < 00
and 1/t =1/t + -+ 1/t
(1) T maps L'+ x ... x Lt=1into LB if t > 1,
(2) T maps Lt x ... x Lt=1into LY if t = 1,
where the signs Lf1, Lt2! . L'm! and L'm° all stand for Lorentz spaces.

The initial interest in the study of commutators was related to the general-
ization of the classical factorization theorem for Hardy spaces according to [4].
Then Pérez and Torres generalized the definition to the commutators generated
by multilinear singular integral operators and BMO functions in [16]. Now we
recall the definitions of the multilinear commutators and multilinear iterated
commutators as follows.

Definition 1.3. Let b = (b1,...,bn) be afamily of locally integrable functions.

The m-linear commutator generated by b and the m-linear operator T is defined
by
j=1

=

where each summand Tg (f) means the commutator of b; and the jth entry of
T, that is

TEJ’(JF) :b.jT(fla~-'afj7"'afm>_T(f17~-~7bjfj""7fm)'

Definition 1.4. Suppose that T is an m-linear operator and b= (b1,...,bm) s
a family of locally integrable functions. Then the m-linear iterated commutator
generated by T and b is defined by

—

Tng(fh . -7f7n) = [bh [b27 SER) [bnz—l; [bmaT]m]m—l .. -}Q]I(f)y
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where f = (f1,---y fm). If T is given as in Definition 1.1, then we can write

T]‘[E(flv""fm /W)m ( (z) - bj(yj)>K(x,y1,...,ym)fl(yl)...

X fm(ym)dyl e dym-

In 2002, Grafakos-Kalton [6] and Grafakos-Torres [8-10] carried out a sys-
tematic study on the theory. In [8], the authors showed the boundedness of
classical singular integral operators. They obtained that 7" was bounded from
LPrx...x LPm to LP for every 1 < p1,...,pm < ocowith1/p=1/p1+---+1/pm.

Grafakos-Martell made some work about weighted estimates for standard m-
linear Calderén-Zygmund operators in [7]. The weight that they discussed was
the Muckenhoupt weight. They obtained that T° was bounded from LP*(w;) X

X LPm (wyy,) to LP(w) for every 1 < p1,...,pm <ocowith 1/p=1/p1+---+

1/pm, where wy, ..., w,, were a family of weight functions and w = H;n:l wjpj

n [10], Grafakos and Torres put forward a question: “Is there a multiple
weight theory? The most appropriate multilinear maximal function and multi-
ple weights to work with in this direction have not been yet clear.” To answer
the question, the multiple weight was given by Lerner, Ombrosi, Pérez, Tor-
res and Trujillo-Gonzdlez in [11]. The definition of the multiple weight is as

follows.

Definition 1.5. Let 1 < py,...,pn < 0o and p be numbers satisfying 1/p =
1/p1+ -+ 1/pp. Given a family of weight functions @ = (wy, ..., W), set

m b2l
2]
Vg — wj
j=1

w satisfies the A5 condition if

1

mﬁ@/ ym(@/ w )" <o

.':l

-1
When p; = 1, the condition | infw, takes place of the condition
j o i

(\Q\ Jow;™ p])

In [11], the authors not only gave the Az condition for the multiple weight,
but also introduced the following new maximal functions

M(f SUPH |Q|/ | f5(y;)|dy;,

wa>sw(@/n%|%y

S
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Making use of the above notions, the authors in [11] obtained a range of
results for the boundedness of T and Tj. More precisely, with the multilinear
Calderén-Zygmund operator T' and 0 satisfying the A 5 condition, they proved
that 7" and Ty are both bounded from LP'(w1) x --- x LP™(wy,) into LP(vy)
for every 1 < p1,...,pm <ocowith 1/p=1/p1 + -+ 1/pp.

In 2014, Zhang-Lu introduced multilinear singular integral operators with
kernels of Dini type in [15]. They are multilinear operators satisfying the
condition (1.3) in the foundation of standard multilinear Calderén-Zygmund
operator into the following condition,

(1.4) K (Yo, Yjr -2 Ym) = K(Yos -, Ys -3 Ym)|

< C h( i — y;l )
(yo—wil+ -+ 1vo —ym)™ \Uyo — w1l + -+ Y0 — Ym|

for |y; —yj| < 1 maxi<j<m Yo — y;|, where h(t) is a non-negative and non-
decreasing function on R¥.

We note that (1.4) implies the condition (1.3). One can easily check this by
letting h(t) = t. Thus the standard multilinear Calderén-Zygmund operator
is a special case of multilinear singular integral operators with kernels of Dini
type. Assume that h(t) : [0,00) — [0,00) is a non-decreasing function with

0 < h(1) < co. For a > 0, we say that h € Dini(a) if

1
ho(t
[P Dini(a) = / 775( )dt < 00.
0

In [15], Lu and Zhang mainly studied the multilinear singular integrals with
kernels of Dini type and the multilinear commutators with the multiple weight.
Let W€ Ap for 1 < p1,...,pym < oo with 1/p =1/p1 + -+ + 1/pm. Then the

authors showed that if b € BMO™ and h satisfies

(1.5) /01 @ (1 + log 115) dt < oo,

then Tj is bounded from LP'(wi) X --- x LP™(wy,) into LP(vg), where b =
(b1,...,bm) € BMO™ is defined by b; € BMO for j = 1,...,m. Also, it was
shown in [18] that if b € BMO™ and h satisfies

(1.6) /Olhit) <1—Hogi>mdt<oo7

then Ty is bounded from L™ (w1) X -+ x LP™(w,y,) into LP(vg). In [13],
Lin-Xiao gave a kind of multilinear singular integrals with generalized kernels
which changed the condition (1.4) into a weaker condition. For any positive
integers k1, ..., kmn,

(1.7) ( / /
2km |yo—y§| <ly1 —yo|<2Fm+1|yo—y(| 251 |yo —y4 | <|ym —yo|<2F1H1 [y —yy|
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1

| K (Y0, Y15+ -+ Ym) —K(yé,yl,m,ym)qdyl---dym)

m
_mp _nk,
< Clyo — ol = HckiQ “

i=1

where 1 < ¢ < 00, Cf, is a positive constant about k; and ¢’ is the conjugate
exponent of q.

Motivated by [7,11,13-15], we now discuss the weighted boundedness of
multilinear commutators and multilinear iterated commutators generated by
the multilinear singular integral operators with generalized kernels and BMO
functions, where the weight is the multiple weight. However, the condition
(1.7) can not be suited for the multiple weight condition. This fact forces us
to search for another kind of generalized kernels as follows. For k € N,

1

q
(18) </ |K(y07y11---7ym)7K(y(l)sy17<-~7ym)‘qdyl"'dym>
J2kymlyo—yy |<|T—1o | <2M 1 vmlyo —yg
_kmn

< CClyo —yo|~ 7 27«

whenever yB = (y()yyOa s 7y0)) q = (y17y2a s 7y'rn)7 (Q7ql) is a fixed pair of

positive numbers satisfying é +o= 1 and C} is a positive constant about k.

Remark 1.6. By calculation, we can find that condition (1.4) implies condition
(1.8) by putting Cx = h(27%). According to the contents that we mentioned
in the foregoing, the work in [14] includes the classical case. So we can deduce
naturally that our work contains both the cases of standard kernel and Dini
type kernel under some conditions that relate to q.

This paper will be organized as follows. In Section 2, we will list the neces-
sary definitions and lemmas. In Section 3, we will state our main theorem for
the weighted estimates for T;; and TH ;- In Section 4, we will give the proof of
all theorems.

2. Necessary definitions and lemmas

In this section, we give some definitions and lemmas to be used later.

Definition 2.1. Fix positive integers k and m satisfying 1 < k < m and we
suppose C}" is a family of all finite subsets 0 = {o(1),...,0(k)} of {1,2,...,m}
with & different elements. If j < [, then o(j) < o(l). For any o € C}*, let
o ={1,2,.. m}\a be the complementary sequence. In particular, C§* = 0.
For an m- tuple band o € Cy, we denote b = (bo(1)s - - - » bo(ky). Given T' the
m-linear operator and o € C", the multilinear iterated commutator is defined
by

—

Ty (oo fm) = [bo(1)s [bo(2)s - -5 [bo(i-1)s [bo()s Tlo(hloGi-1) * *lo@]o) (f)-
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According to (1.1), we can also represent the multilinear iterated commutator
by

Tnb;(flw"afm / H(o() - U(i)(yo(i))>K(x’yla"'7ym)

x f1(y1) o S (Ym)dyr - dym.
Obviously, Tpy - = Ty wheno = {1,2,...,m} and Ty - = Tg; when o = {j}.
Definition 2.2. The Hardy-Littlewood maximal operator M is defined by

Mf(x —Sup |B|/|f )|dy,

where the supremum is taken over all balls which contain x. We can also define
the operator M, by M,(f) = [M(|f]*)]*/*, s > 0. The sharp maximal operator
M is defined by

M) = sup oz [ 1) = Fady ~ swp it 2 [ 17) = ald
and fp = W fB |f(y)|dy. We define the l-sharp maximal operator Mlti by
MF(f) = [ME( D1, 1> 0.

Definition 2.3. For a locally integrable function f, we say that f has bounded

mean oscillation if f satisfies M#(f) € L>. The function space consisting of
all functions that have the property is denoted by BMO. Let

1
Ilaro = sup oz [ 15(2) = falda,
B |Bl /B
where the supreme is taken over all balls B C R™.

Lemma 2.4 ([11]). Suppose that p,q satisfy 0 < p < q¢ < oo. Then there
is a positive constant C' = Cp 4 such that for any measurable function f, the
following inequality

QI IIflle(@) < CIQIT I f o=@
holds for any Q.
Lemma 2.5 (see [12]). Suppose that f is a function in BMO(R"), 1 < p < o0,

x € R™, and r1,79 > 0. Then there is a positive constant C independent of f,
x, r1, and ro such that

1 1/p -
Bl - ray)  <c(1+4m2 ,
<|B(x,r1)| e 1F(y) = [B(2, ) y) < C( + [In - |> | fllBao

Lemma 2.6 ([5,11]). Let 0 < p,0 < 0o and w € A. Then there exists a
constant C' > 0 depending only on the Ay, constant of w such that

[ s @ e <0 [ M)

R
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for every function f such that the left-hand side is finite.

Lemma 2.7 ([11]). Let @ = (wi1,...,wm) and 1 < p1,...,pm < 00. Then
w € Ap if and only if

1—p .
w; JEAmp;, j=12,...,m,
Vg € Amp.

- 1-p); . . 1
The condition w; Pi g Amp; in the case p; =1 is replaced by (CHENS A

Lemma 2.8 ([11]). Let 1 <p; < o0, j=1,2,...,m, and 1/p=1/p1 +--- +
1/pm. Then the inequality

1Moy < CTT 1l (g
j=1
holds for any fzf and only if W satisfies Ap condition.

Lemma 2.9 ([17]). Let m > 2 and T be an m-linear singular integral operator
defined by (1.1) with generalized kernel satisfying (1.8) and Y ;- Cp < oo.
Suppose for fized 1 < ri,...,1ry < ¢ with 1/r 1/ri 4+ 4+ 1/ry, T is
bounded from L™ x --- x L™ into L™*°. If 0 < 6 < 1/m, then we have

MAT(f)(z) < CMy (f)()

for all m-tuples f: (f1,---, fm) of bounded measurable functions with compact
support.

3. Main results

Theorem 3.1. Let m > 2 and T be an m-linear singular integral operator
defined by (1.1) with generalized kernel satisfying (1.8) and Y ;- kCj < oco.
Suppose for fited 1 <ry,...,rpm < ¢ with1/r=1/r1+---+1/ry, T is bounded
from L™ x -+ x L™ into L™, Ifb € BMO™, 0 < § < 1/m, § < gy < o0
and ¢’ < s < oo, then for all m-tuples f: (f1,---, fm) of bounded measurable
functions with compact support

M(Ty(f)(@) < Cllbl| saron <M50 (T(f))(x) + Ms(f)(w))

where ||b]| parom = maxi<j<m ||b; || Baro-

Theorem 3.2. Letm, T be as in Theorem 3.1. Suppose for fired 1 < ry,...,rpy
<q withl/r=1/r1+---4+1/ry, T is bounded from L™ x ---x L™ into L.
Ifb € BMO™, then for ¢’ < pi,...,pm < 00 with Lp=1/pr+---+1/pm, Ty is
bounded from LP*(wy) X - - - X LP™ (wy,) into LP (vg), where @ = (wq, ..., W) €

m
Ap ) and vy = [[;1; w;
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Theorem 3.3. Let m > 2 and T be an m-linear singular integral operator
defined by (1.1) with generalized kernel satisfying (1.8) and > poy k™C < oo.
Suppose for fixed 1 <ry,...,rpm < ¢ withl/r =1/r1+---+1/ry, T is bounded
from L™ x -+ x L™ into L™*°. Ifb € BMO™, 0 < § < 1/m, § < gy < o0
and ¢’ < s < oo, then for all m-tuples f = (fis---s fm) of bounded measurable
functions with compact support

M 7)) < € T I llmaro (M (1) o) + M (o))

j=1

03 Y Tt a0 M (T (F) @)

j=1 oeCp i=1
Theorem 3.4. Letm, T be as in Theorem 3.83. Suppose for fired 1 < ry,...,rpy
<q withl/r=1/r1+---4+1/ry, T is bounded from L™ x ---x L™ into L.
If b€ BMO™, ¢ <p1,...,pm < oo with1/p=1/p1+ -+ 1/pm, then Ty5 is
bounded from LP*(wy) X - - - X LP™ (wy,) into LP (vg), where @ = (wq, ..., wy,) €

Pj

m
Ap ) and vg = [];2; w;

Remark 3.5. It is easy to check that (1.5) implies Y, kC < oo and (1.6)
implies > 7~ | k™C}, < oo by putting C, = h(27%) in (1.8).

> > 1h(t) 1
kC), = k-h(27F %/ <1+lo >dt<oo,
kz:l k ; ( ) o 1 gt

and
s} oo 1 m
h(t 1
E E"Cy = E E™ . h(27F) & / h(t) (1 + log ) dt < 0.
k=1 k=1 o 1 t

Thus the corresponding results of multilinear commutators and multilinear
iterated commutators of multilinear singular integral operators with Dini type
kernels in [15,18] and the standard kernels can be deduced as special cases of
our results in this paper under the exponent range ¢’ < p1,...,pm < 0.

4. Proof of the main results
Proof of Theorem 3.1. Fix z € R™. For any ball B 5 z, we first consider
Ty (fro- o fm)(2) = b1(2)T(f1, .o fm)(2) = T(bifr, ..., ) (2).
Let B* = 164/mB, then for any z € B,

Ty, (fr, - fm)(2) = (b1(2) = bip)T(fr, -, fn)(2)
- T((bl - blB*)fla T fm)(Z)7



MULTIPLE WEIGHTED ESTIMATES 215

where big- = ﬁ fB* b1(z)dz. Since 0 < & < 1, then for any ¢ € C, we have

(137 [ I P - c|5|dz)é

< c(“f;,| [ 1) - b1B*)T(JF)(Z)|6dZ>5

+C<;|/B|T((b1 —bip)f1, o fm)(2) — C|5|dz> 5
=1+ 11.

We can find an [ such that 1 < < min{Z¢, 15}, then 1§ < &g and I'd > 1.
By Holder’s inequality and Lemma 2.5, we obtain

I§C<|;|/ by (2) — bu-|?! z) (|B|/ (" |‘”dz)5ll

—

< C(1+In16v/m)||by || Baro Msi(T(f)) ()
< Cllb1]l BroMe, (T(f)) ().
For each j, f; = f{ 4 f3° where f) = fjxp-. Then

m
Hfj(yj)znff(yj)Jr > ) e T (Ym),s
J=1 Jj=1 (a1,...,am)€T
where I' = {(a1,2,...,0a;,) : there is at least one a; # 0}. Denote zy5 =

(20,20, --+520), ¥ = (Y1,Y2, - - -, Ym), the center of B by z( and the radius of B
by rp. We choose 2z € 4B\3B. Let

c = Z T((bl_blB*) 10417 2042,..."]0’2?”,)(20).
(a1yeeym )ET

Then

I1 < C(é/ IT((by — blB*)f?,fS,---,fﬁl)(Z)l‘;dZ)
L C ( /|T b ) fO 2 £ (2)

(a1, 7C¥m)€F
1

T((by = bap=) 1, 3% -+ F ) (20)] dz)

=1L+ Y Il a0
(a1,eee,am )ET

Let t = s/¢, then it follows from s > ¢’ that ¢ > 1. Since r; < ¢’ for
any j, we get r;t < s. Using Lemmas 2.4, 2.5, and the assumption that
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T:L™ x---x L™ — L™ is bounded, we have
IIo < C|BI72 T ((by — bip) 2, 9, fod o (m)
< CIBI™YTIT((by = bip=)f7, f55 - s F) oo ny

< C( 1* |(b1(2) — blB*)fl(yl)rldyl)rl
|B*| J

) JHQ<|B| /B |fj(yj)|"fdyj> ;

SC(|B*|/ i) = ) ™ (5 [ )
(- Ifj(yj)l”dyj)

< Cl|b1llBmo H<|B*| /B* fj(yj)|5dyj>
j=1

< C|lby|| BrroMs(F) ().

For any (a1,a9,...,am,) € I, we can find a j € {1,...,m} that makes
a; = oo. Then for any ¥ = (y1,Y2,...,Ym) € suppfi'* X --- x suppfsm and
2 € B, |§— 2| > 2/m|z — 20|, and 2rp < |z — 29| < 5rp. Thus

(11,0427

= / / (K (2 5) ~ K (0. ) 101 (31) — bus-
\ \ — 5|22/ 2 20|

X H | fi(y;)|dgdz

|K(2,9) — K (20, %)
\B\ /Bz/zkrz 20| <[F—50| <251 /] 2— 20

H | £ (y;)|dyd=

J=1

K (2 §) K(zO,mwczy*)
\B\ /JBZ</2kmlz—zO|§|aj—za<2k+1f|z—20|

X (/ [b1(y1) — bip-|* H|fJ ()] dy) dz
|§—20| <2k +1y/m|z—2z0]

X [b1(y1) — bip~

1

<ot

oo
B < / K (2,5) = K (20, )"
Bl /5 =1 \Y2Fy/m|z—z0|<|§—20|<2FF1/m|z—20|
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1

“ 1
X dyf b o
) (s ol s | LM T B152)

1

X fl(y1)|q,dy1) .

1
a’

. 1

x 'd
H<B 2o, 281 /m|z — 29])| /lyjzo<2k+1\/m|zzo| 75wl yj)
(2k+1\F|Z—Zo|) T dz

1 . g
< Cf/ Z(/ IK(z,y)—K(zO,y)lqdy>
1Bl J £ \J2r iz -zl <l 55| <2041 il 220

1 1yl
X b1 (y1) — bip=|*" dy1)
<|B($072k+2vm\2 = 201)| Jjys — 20| <2r+2 /i 2 20

1
77

1
1 i
x ) dy1>
(|B(Z072k+1\/m|z _ZO|)| ly1—z0| <2kt /m|z—z0]|

1
q't

m 1 ,

X || Ny )
- <B 20, 2V y/mlz = 20])| Sy, o <2r 1 220 i) dy;
(2k+1\ﬁ|Z—z0|) W dz

< 0||b1||BMo®/BZ|z—zOr%ckT
k=1

R il — 2]) T

s

x _ f-(y->|5dy-> dz
jl_[1<B(20’2k+1 m‘Z—ZoD‘ ly; —zo|<2Ft1/m|z—z0]| I ’

—

< Clb1ll BroMs(f) ().
Thus

Y ..., < Clbil BroMs(f)(2).

(@1yeeyam )ET

Combining the above estimates we get the result
M(TH(f)) (@) < Cbl”BMO( o(T())() + Ms(3($)>
< Clfllaso (M (T(H)o) + M) )

Similarly, we obtain for any j =1,2,...,m,

MHE(7)) ) < ClPlao (M (TP + M.} (0)).
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So we have

MUTH()(x) = ME D T2F) | (2)

IN
NE
5
3
=
=

IN

Ol a0 (M50<T<f>><x> M 3<x>),

which completes the proof of the theorem.

Proof of Theorem 3.2. Let ¢ = qE, = (& ..., Z—T). Since w € Ag, by Lemma

Q

2.7, each ¢; = w; R belongs to A, where ¢; = %, 7 =1,...,m. By inverse

O

Holder’s inequality, we can find constants c;j,t; > 1 depending on the A,

constant of ¢; such that

t; 1
A\ e [
1Bl J5 1Bl J5

for any ball B. Pick a d; > 1 that makes
t; 1
gj—1 L1

J

Then ¢; >d; >1,j=1,...,m.
Let d = min{dy,...,d} and ¢ = max{cy,...,cn}t. We have for g = &

q
1/99 m el 1-1/
1 d 1 T d
(|B|/“‘v) H(|B|/“’j i )
B . B

IA
N
)=
S~
&
N——— &l/ N———
s

IN

s

3
7N
[~
T

<

g
N— <
—

IN

o)
.
2
E
Y
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Thus @ € Ag/q. Let s = ¢'d, then we can find that s > ¢’ and s < py,
j=1,...,m from d > 1. We can get the result

W e Agra = Aﬁ/s-
Take €9, d so that 0 < § < gg < % We can deduce the following conclusion
from Lemma 2.6, Theorem 3.1, Lemma 2.8, Lemma 2.9 and & € Aﬁ/s'
IT5() |2 (o) < IMs(T5())| 2o (o)
< 1M 2o (0.0
< Clbllsarorn [ Meo(T(F)) + Ma( Pl o)
< C”b”BMO’”(“MO(T(f))”LP(vw) + Mo ()l oa)
< CIbl| parom | M

= ClBl zarom | M(f*
m

< C|bll o H II1f;1°

j=1
= C|bll Basor H £l 275 ()
j=1
This finishes the proof of Theorem 3.2. (I

||L1’('uu<,)

\_/\./

P

Ls (vg)

wj)

Proof of Theorem 3.3. For the sake of simplicity, we only consider the case
m = 2. The proof of other cases is similar. Let f1, fo be bounded measurable
functions with compact support and b1,b2 € BMO. Then for any constants A\
and Ag,

=

Trp(f)(2) = (01(2) = M) (b2(2) = A)T(f1, f2)(2)

)

= (b1(2) = M)T(f1, (b2 — A2) f2)(2)

= (b2(2) = A2)T((b1 — M) f1, f2)(2)
+T((b1 — A1) f1, (b2 — A2) f2)(2)

= — (b1(2) = A1)(b2(2) = A2)T'(f1, f2)(2)

+ (01(2) = M) T, 5, (f1, f2) (2)
+ (ba(2) — )‘2)Tb1 A (f15 f2)(2)
+T((b1 — A1) f1, (b2 — A2) f2)(2).

Let Cp be a constant determined later. Fixed x € R™, for any ball B(zg,75)
containing x and 0 < § < =, we have

(151 /L ITasr - o |dz)l
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< (177 [, thee) - cora:)”

T z) = A1)(02(%2) — A2 1, f2)(2)|°dz
gc(|B|/|<b1<> M)(ba(e) = M o)(2) P

+c(|B|/ (b1 (2) — A)T2 _ Az(fhh)(z)'édz)a

ol

+C<|B|/ |(b2(2) = A2) T3, _, (i, fo) (2 )|5d2>

=

o [T =202 -2 - ot

=1+ 11+ 11T+ 1V.
Then we calculate each term, respectively. Denote B* = 161/2B and Aj =
(b)8 = 52357 Jiovan bi(@)de, j = 1,2. Since 0 < 6 < S and 0 < § <29 <
o0, it is easy to seek an [ such that 1 < [ < min{<2, 15}. We can deduce

that 16 < 50 and I'§ > 1. Choose ¢1,¢2 € (1,00) satlsfylng i + q% = l,, then
——f— —|— 7 1'=1, ¢8> 1and ¢26 > 1. By Lemma 2.5, wehave

5 16 s
X <|M/;a|b2( A2|q25dz>

< Clb1 Bmollball Baro Msi(T(f1, f2)) ()
< Clb1| Bmollball BaroMey (T(f1, f2)) ().
It follow from Hélder’s inequality that

1 5 BNt
ngc(m| /B ITfQ_A2(f1,fz)(2)|”dZ> (|B| /B |b1<z>—A1|”dz)

< Clbill o Ms(Ty, 5, (f1, f2))(2)
< CllbrllBaro Meo (T, (f1, f2)) (2).
Similarly we can get
I < Cllbs| BroMey (Ty, (f1, f2)) ().

Next, we estimate IV. Split f; into two parts f; = f2+f°, where f0 = fxp-
and f° = f; 9 i =1,2. Choose zg € 4B\3B. Denote z; = (2¢,20) and
¥ = (y1,92). Let

Co= Y T((br—M)f, (b2 — A2) f52)(20),

(a1,a2)€l
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where I = {(a1, a2) : there is at least one a;; # 0, j = 1,2}, then

5

v < c(}B /B T (s — M) F2, (b — Az)f?)(Z)I5d2>

1 (¢35} _ a2 z
D (W N CERSIARCEPSESIE

(a1,02)€l

Sl

CT((by — A (b — M) §2><ZO>|5dz)

=IVo+ > IVay o
(ay,a2)€l

Let t = s/¢’, then it follows from s > ¢’ that ¢ > 1. Since r; < ¢’ < s for
any j = 1,2, we can get r;t < s. By Lemma 2.4 and Hoélder’s inequality,

IV < C|B|7Y8|T((by — M) fY, (b2 — X2) f) | ()
< C|BI7Y7 | T((by — A1) f2, (b — Xa2) f)]

L7 (B)
1 1
1
<c( at) = P )l i
116v2B| J16v2B
(e ba(y2) — Dal | a4 )
T = 2\Y2) — A2 2\Y2 Y2
116v2B| Jisvan
(55 I <y>|”tdy)"it
<C| ——— 1(y1 1
116v/2B| J16v3B
1
1 / rit/
X [ ——— bi(yr) — M| dyl)
(16\/53 16\/53‘ (v) |
(57 ol )
X | ——= 2(y2 Y2
116v2B| J16v2B
1 , T
X | ——— ba(y2) — A2|™* dy2)
<16\/§B 16\/53‘ (v2) |
1
1 s
< C|lb1llBmollbz2]l BMmo ( |f1(y1)|sdy1>
116v2B| J16v35

1

s

1
X | ——= f2(y2 sdy2>
(16\/§B 16\/53‘ (v2)
< b1l arollb2ll BaroMs(f) ().
For any (a1, ) € T', we can find a j € {1,2} that makes a; = co. Then for
any ¢ = (y1,y2) € suppf;* x suppfs? and z € B, |§f — Z| > 2\/§|z — 20| and
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2rp < |z — 29| < 5rp. Thus
IV, s

1
gCF// | K (z,91,y2) — K(20,y1,¥2)|
1Bl J5 J)g-2|>2v3]— 20|

2
X H 165 (y;5) — Asll£i(y;)ldyd=

B/ / |K(Z7y1ay2)_K(ZO7y1ay2)|
| | B ;=1 /28 V2]z—20|<|§— 20| <2k 12|z — 20|

X H 10 (y5) — Nl fi(yy)|dyd=

1 )
70 B / Z(/ |K(Z7y17y2)_K(ZO7y17y2)|q
| | B 1 2kﬂ|2—20|S\ﬂ—25\<2k+1\/§|z—z0|

1
7

ng>q</ H|b vi) qu/fj(yjﬂq’dy) dz
Yy—

20|<2k+1/2|2— z0|] 1

1
_CB / Z(/ |K(Zvy17y2)*K(207y17y2)|q
| | B 11 \J2FV/2|z— 20| <|§— 70| <2k +1v/2|2— 20

2

0 1 ,
ng) ( 16 () — Ajl
jl;ll |B(20,2541V/2]z = 20])| Jiy;—zol<2rt1vBlamze

1

X |fj(yj)|q/dyj) |B(20, 25 71V2|2 — 2o|)| 7 dz

1 o0
_CF/ Z(/ |K(Z7y17y2)7K(207y17y2)|q
|B| B ;1 \J2FV2]z—20|<|F— 5 | <2k +1 /2] 2— 20|
1

2

q 1 ’
xdg) ( by () — Al
jljl | B0, 2572v/2]2 — 20)| iy, —zol<2t+2vBlsmnol

2 L
q’t’ 1 Tt
<any) " TI Iy )
! j=1 |B(ZO7 2k+1\/§‘z - ZOD| ly;—zo| <2k +1v/2]z—z0 | I /

x | B(20, 2"7V2|2 — 20])|7 dz

< Cllbil[Bmol|b| \BM0|B| / Z\z o

H( : |fj<yj>|5dyj)idz

| B(20, 2571V22 — z0])| Jjy; —z0l<2v+1 V32|

2n
(2k+1\/§|z _ ZOD o7
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—

< C|b1llBrmollbz|| BaoMs(f)(x).
Thus

—

> Vayas < ClbillaollballBraro Mo (F)().

(a1,a2)€l
So

—

IV < C|bil| amollbe| Baro Ms(f)(z).

Finally, we can get the result,

MET5(F) (@) = MA( T ()3 (2)

< Csu / — |C dz)

< C||b1||BMobzllBMo< o(T(F)(@) + Mo (f)(a )>

+ C([Ib1ll Baro M (T, (f)) (@) + llb2ll Bar0 Mz, (T, (£)) ().
This completes the proof of Theorem 3.3. (]

Proof of Theorem 38.4. Proceeding as in the proof of Theorem 3.2, we can find
an s such that ¢’ < s, s <p;,7=1,.. mandwEAP/g

Choose 0,e1,€9,...,6m satisfying 0 < § < ey <eg < -+ < gy < % We can
deduce the conclusion by Lemma 2.6 and Lemma 2.9.

1Mo, (T(D o) < CIME (T o )
< C”Mq’(f)HLP(vm) < CHMS(]?)HLP(UU;)'
By Theorem 3.3, we have
1M 5 2o o)

<] ||bj||BMo(nMal(T(f))um(w) ; ||Ms<f>|m<w>)

j=1

m—1 7
+Cz Z H||bo(i)HBMOHMs1(THEG,(f))”LP(Uw)

j=1 oeCi=1

<c] ||bj||BMo(nMal(T(f))nm(w) n ||Ms<f*>|m<m>)

j=1
m—1 7
+0 3 > o llsaol ME (Tys, (D)lle -
j=1 o€l i=1
For the purpose of reducing the dimension of BMO functions in the commu-
tators, we apply Theorem 3.3 to || MZ (T 15, l(f))(m))HLp(m).
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Let 0 = {o(1),...,0(j)} and ¢/ = {o(j + 1),...,0(m)}, Ap={01 : subse-
quence of ¢/ with o1 # o'}.

102, Ty, ) o)

<c 1] ||bo(¢)|BMo<|M52(T(f))IILp(W)+|Ms(f)||m<w))

i=j41

+C Z > Hllbol ollsrollMe, (Tyz, (Do (w)-

h=1 o1€A i=1

Repeating the process above and using Theorem 3.1, we can get
IME T 5N 2 o)

< T Ibsllmaro (AmH(m,n)Ms(mm(w)

j=1
+ A (m, )| Moy (T(H) | 1o () + Az, )| My (T(F)) | 2 (o)

ot A (m) M, <T<f>>||m<w>)’

where A1(m,n), As(m,n), ..., Ams1(m,n) are positive constants depending on
m and n.

We can deduce the following conclusion from Lemma 2.6, Lemma 2.8 and
w e Aﬁ/s'

T3 ey < M5 (T ()| o o)
< 0||M”<T 5N o (o)

< [T 1bslBmo (Amﬂ(m,n)ll/\/ls(f)muﬁ) + A1(m,n)
j=1

X ||M51 (T(.F))HLP(%;) + AQ(mvn)HMw (T(]F))”Lp(vm) +e

+ An(m ), (T )

< C T IbsllmarolMs(F)ll o os)

j=1

< CH N0l Barollll 511275 (w;)-
j=1

The proof is completed. (I
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