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A NOTE ON SOBOLEV TYPE TRACE INEQUALITIES FOR
s-HARMONIC EXTENSIONS

YONGRUI TANG AND SHUJUAN ZHOU

ABSTRACT. In this paper, apply the regularities of the fractional Poisson
kernels, we establish the Sobolev type trace inequalities of homogeneous
Besov spaces, which are invariant under the conformal transforms. Also,
by the aid of the Carleson measure characterizations of Q type spaces,
the local version of Sobolev trace inequalities are obtained.

1. Introduction

In the study of many fields, such as analysis, geometry and partial differential
equations, Sobolev type trace inequalities play an important role. Essentially,
there exists a profound connection between Sobolev trace inequalities and the
boundary problem of differential operators. Also, in the theory of function
spaces, Sobolev type trace inequalities provide the characterization of boundary
behaviour of functions with sufficient smoothness. Let ¢ be any real-valued
function on Riﬂ :=R" x (0,00) which is sufficiently smooth up to boundary
and decaying fast at infinity. In [9], Escobar proved the following Sobolev type
trace inequality: there exists a constant C' such that

(1)
(n—2)/(2n-2) 1/2
/ |g0($,0)|2(n_1)/(n_2)d$ <C / |V$,t<p(x,t)|2da:dt ’
n Ri+l

where the symbol V, ; denotes the gradient operator Vs = (Oyy, .-, 0s,,0t),
see [9, Theorem 1]. Using different technology, Beckner in [1] obtained the
above trace inequality (1) independently. A direct consequence of (1) is as
follows, with p:(-) being the Poisson kernel on ]Ri“, ie.,
t
pt(l’) = (t2 T |x‘2)(n+1)/27
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342 Y. TANG AND S. ZHOU

there holds
(2)

(n—2)/(2n-2)
( / |f<x>|2<””/<“>dz> < c( /
n ]R’

1/2
Ve Dt f(fc)IQdfrdt> :
.
Applying a weighted integral of the Fourier transform of the given function
and to E. H. Lieb’s sharp estimate for the Hardy-Littlewood-Sobolev inequality,
Xiao [16] established an analogue of (2) for the fractional-order derivatives. For
further information, we refer to [12], [13], [15], [17] and the references therein.
In this note our aim is to establish the Sobolev type trace inequalities via
the higher order regularity of the s-harmonic functions which are the solutions
to the following equations:
) {div(tl—svu) =0, (z,t) € RTT

u(z,0) = f(z), z € R™.

Let f be a regular function in R™. We say that u(z,t) = Psf(z,t) is the
Calffarelli-Silvestre extension of f to the upper half-space RT‘l :=R" x (0, 00),
if u is a solution to equations (3). The Caffarelli-Silvestre extension is well
defined for smooth functions through the fractional Poisson kernel

s c(n, s)t? _Dln+5)/2)
p;(z) = (=2 _|_t2)(n+s)/2’ c(n,s) = W(S/Z)

as

s _ fy)t®
Psf(xat) =D * f((Eﬂf) - C(n>s) A" (‘.’E _ y|2 +t2)(n+s)/2dy'
Here f *g means the convolution of f and g. Caffarelli and Silvestre [4] proved
that

(4) (7A)S/2f(;z:) = —Cs tliI(Iler tlfsatu(x,t), Cs = 21_5;((81/3)8/2)

This characterization has dramatically popularized the application of the frac-
tional Laplace operators, see [3], [4], [5] and [6].

In Section 2, we prove an L?-estimate for the Fourier transform pj(-), see
Proposition 2.3. In Theorem 3.1, by the aid of Proposition 2.3, we estab-
lish the following equivalent characterizations of homogeneous Sobolev spaces
HY/2(R"), i.e., for ¥ > 0 and v € (0, min {n, 2s + 2v}),

6 ( [.l5
Ry

9 1/2
g (A i+ £ (@) t””’"”‘”””) ~ [[(=2) /4 e,
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see (15). This characterization enables us to obtain the Sobolev type trace
inequality, with v > 0,

(6) )
2n/(n—v) d > <
([ 1 ) s /

1-v/n
(/ |f ()2 (=) dm) < / |V u(a, t)|2 21V dadt.
R™ Ry

The corresponding fractional logarithmic Sobolev inequality and the fractional
Hardy inequality can be deduced, see (ii) and (iii) of Theorems 3.1 and 3.2,
respectively. Specially, letting m = 1, Theorems 3.1 and 3.2 comes back to
[13, Theorems 3.1-3.3]. Hence the Sobolev trace inequalities obtained in Section
3 are generalizations of those in [13].

A direct computation indicates that the inequality (6) is invariant under the
transform ¢(z) = A\x 4+ o for A > 0 and zp € R", i.e.,

om
atm

2
(=AY 2z, t)| P21 gga;

1-v/n
° 2n/(n—v) <
(Lceomiea) s [

However, both the space L2/ (»=¥)(R") with

on/(n—v) (n—v)/2n
lgzerocer = ([ 1@ o) <o

and the Sobolev space H/?(R") with

/n+1
< R+

are not invariant under the transform ¢. In [16], using the characterization
of Q type space Q,(R™), Xiao obtained a revised conformal invariant Sobolev
type trace inequality, see [16, Theorem 4.1]. In Theorem 3.11, following the
idea of [16], we prove a local version of (6):

(7)
1 2n/(n—v)
sup (m J1s@ = da

i, 9 1/2
<C sup Py / / 2=V e dt .
zoER™,1€(0,00) 0 Jy—=zo|<r

Notations. In this paper, U ~ V indicates that there is a constant ¢ > 0
such that ¢~V < U < ¢V, whose right inequality is also written as U < V.
Similarly, we write V' 2 U for V' > ¢U. Throughout this paper, the symbol
Z(R™) denotes the Schwartz class of rapidly decreasing smooth functions on
R™. The dual of .(R™) is denoted by ./ (R™).

am 2
i 2 2m=l=v et

o (~A) (o )(a.1)

8m

9 1/2
g (8w (@) t2“’+2m_1‘”dxdt> < o0

)(nl’)/(%)

o

v/2
o (A ()
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2. Basic lemmas

Lemma 2.1 ([13, Proposition 2.1]). The fractional Poisson kernel pi(-) satis-
fies the following properties.

For a positive constant Cy, s, the Fourier transform pi(-) can be represented
as D3 (&) = Cp sGs(t|E]), where

Gs(t) = /OO w3/2_1e_w_t2/(4’\)dw,
0
which satisfies
(8) / Gy (B)20dE < 50, —1—5 < a
0

Denote N1 is a set includes all positive natural numbers.

Proposition 2.2. Let s € (0,2), (z,t) € RT™" and i, m € N*t.

(o] dm
—G,(t
[ |ime
Proof. By the higher-order derivative formula of composite functions

(9)

2
t%dt < 0o, a>2m—2s—1.

m (m—1)/2 T . . -
dxmj(a + CJ,’Z) _ ; m(m 1) ll(m 21 + 1) (21,)777,—274(:771*2 aim7if(u), m is Odd,
dm Fla+ 2) mZ/Q mm—1)---(m—2i+1) gm—i
a—+cx?) =

(2x)m2imi f(u), m is even.

dx™ — 7! Jum—i
i—

We can obtain C; ,, depending on m and 7 such that

dm (m—+1)/2 0o s
‘ﬁgs(t)' _ Z Cl_mltzifl / 7(577n+1)/272’7167'yft /(4’\/)d,y , m iS Odd,
i=1 J0
1
o g o )
_ o 42(i-1) (s—m)/2—1—i ,—y—t2/(4v) :
‘dtm Gs(t)' = ; Cimt /0 v e Mdy|, m is even.

Below we assume m is odd.

qm (m+1)/2 ‘ 50 . )
‘tm—sdﬂnGS(t)’ 5 Z tm—s+21—1 / ,y(s—m+1)/2—1—1e—t /(47) d’}/
i=1 0

For t — 0, letting v = ¢?/(4u), we have
(m+1)/2

dm . o0 .
‘tm—sdtmGs(t)‘ 5 Z pm—st2i—1 / ,y(s—m+1)/2—1—ze_t2/(4'y)d,y‘
i=1 0
(m+1)/2

g Z A ui717(57m+1)/267“du.
i=1
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Forallie [1,(m+1)/2]NNT, i—1—(s—m+1)/2>(m—1-15)/2 > —1.
This indicates

dm
’dtm("s |

_me)/2

Z / et (s—m+1)/2 —udu<t9 m

On the other hand, we consider ¢ — oo. For any § > 0, we can obtain
e”" <~y7% as v > 0. Applying the change of variable t?/(47y) = u to get

dm (m+1)/2 ‘ 00 - ,
’dtmGs(t)‘ < ; tzl—l/o (s /2-1=i=8 =12/ (4) g
(m+1)/2
< rmm=28 Z / -1+ (m—1-8)/2 —u g,
< grmm=2,

Similar to the proof of the case that m is odd, for m is even, we can obtain

am o < ™, t—0;
11 —G(1)| S
(11) ‘dtm ( )’ t57m=2 ¢ 00 and VO > 0.

Summarizing, for m € N*, we get

oo dm
——G,(t
/0 ’dtmG‘()

Proposition 2.3. Let s € (0,2) and m € NT. If a > 2m — 1 — 2s, there exists
a constant C(m,n, s, ) such that

2
t%dt < oo, h>2m—2s—1.

O

to‘dt = C(m,n,s, )¢ 17,

| [

Proof. By Proposition 2.2 and Lemma 2.1, for u = t|§|, we can obtain

oo dm
[ o] ea=c. [ a | e
0
am ?
= ol [T G| wda

= Cm,n,s,oz|£|2m_1_a~
3. Sobolev type trace inequalities via Caffarelli-Silvestre extensions

The homogeneous Besov spaces and the homogeneous Sobolev spaces are
defined as follows.
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Definition. (i) Let v € (0,1) and p € (1,n/v). The homogeneous Sobolev
spaces W (R") is the completion of C§°(R™) with respect to the norm

|p 1/p
Hf”WT’j(]R" = (/ /n ‘x_y|n+pu BT dy) :

Specially, when p = 2, W¥(R™) is also denoted as H” (R™). Moreover, WPTV(R”)
is the dual of W;(R”)

(i) Let (B,p,q) € (0,00) x (0,00) x (0,00]. The homogeneous Besov space
AP4(R™) is defined as the completion of all C$°(R™) functions with 11l az-a gy

< 00, where
dh 1/q
([ 1880 s )+ a€ (000

sSup ”A f”LP(]Rn)VL‘_Ua qg=0a0
heR™\{0}

1f1lAp-agny =

Theorem 3.1. Denote by u(x,t) = pi * f(x) the Caffarelli-Silvestre extension
of f. Let f € H"/?>(R") and m € NT. If the index v and v satisfy v >
max{0, (v —2s)/2} and v € (0,n), or v >0 and v € (0, min{n, 2s + 2v}).

(i) There holds
(12)

1-v/n
( [ ispnre= dx) </
n R1+1

(ii) If || fl|z2mny = 1, there holds
(13)

exp (n /]R" |f(ac)|2 1n(f(x)2)dw) S /Ri+1

(iii) There holds

dx
a [ serss | .

Proof. In order to prove Theorem 3.1, we need to establish the following result:

(15) / 0
Ri“

atm
In fact, notice that u(z,t) = pf * f(x). It holds

8m
/Ri-Fl 8tm
frnd \/]Ri-*—1

2

am
t2y2m=l=v g, qt.

o (AP u(z.1)

2

87”
—-— 27 E2m=1=v ods.

o (AP u(a, 1)

2

8m
27 F2m=1=v ot

atm

(—A) 2 u(z, t)

2
<—A>”/2u<m,t>\ T IS
Rn

2

(=A) 2wz, t)| 2721V dpdt

om ?
t2'\/+2mflfudxdt

v/2
e (A u(a,)
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oo 'r

= 2y 2v+2m—1—v

/O /}R €17 | g ul&s 1) t dédt
[e’s} 2

N / / €m0 | o G(tED)| (&) dgat
o Jrn 315’”

2
= /. ( o Gl w%”m“dw) g 1F©)de.

By Proposition 2.2, we get
(o) 8m
| |omen

gt:: ( AW) w(a,1)

2

2
WwHTm=1l=ra, < .

Hence
2

t2'y+2m—1—vdxdt

[
~ / (/Om)aajnc:s(w)

~ [ lerfe P

We know that

wwm—l—"dw) €1 F(©)Pde

| ePIF© R = IFOL 174 e

= [[(~A)74 112 (B")
= [I(=2)""*f112@&n)-
It follows from the well-known fractional Sobolev inequality:
1117 20 s gy < B II(=2)* f[[72em
for v € (0,n) and some constant B(n,v) that (12) holds.

347

Now we are in a position to prove (13). Let p = n(r—2)/v,2 < r < 2n/(n—v)

and v € (0, min(n, 2m)). The Holder inequality implies that
(16)

5oy = [ PP 2 < 1 ey ([ 160
If || || L2(rn) = 1, we can deduce from (16) that

) 1-p(n—v)/2n

1/(r—2) 1/(r—2) ,
([ r@ris@pa) = ([ @) < AR o

So, the inequality (12) implies that for a positive constant A(n, s, v),

o
om

s@rwee) < (amsn [
</]R ) JRy*

5 n/(2v)
(—A)"? u(x,t)‘ tzml"dzdt>
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which yields

_ n 2)|" 72| f(x)|*dx
exp(n(T_Q)l </W|f< )= ()P ))
< (A(n,s,y) /R nﬂ

Since ||f|lr2@ny = 1, du(z) = |f(2)|*dz can be treated as a probability
measure on R™. Thus (13) can be obtained by letting r — 2,

lim exp (71(2_2) In ( / ) |f<x>|”|f<z>|2d:c) )

V fo 1 ()2 In(|f (2)[2)dac
P ( " g |f (2)[2dz )

= exp (v [ @R s,

which implies (13). At last, the inequality (14) follows from (15) and the
fractional Hardy inequality

am

P ) n/(2v)
i (=) u(a, t)‘ {2m=1=v gt .

f() v
[k N (SN P
|- 1772 1l L2 ey
which is a special case of [17, (3.1) in Theorem 3.1]. O

Theorem 3.2. Let f € HY/?>(R") with v € (0,min{2s,n}) and m € N*.
Denote by u(x,t) = pi = f(x) the Caffarelli-Silvestre extension of f.
(i) There holds

1-v/n
) ( [ ispnres dx) </

(ii) If || fl|2(mny = 1, there holds

(18) exp (Z [ f<x>|21n<|f<x>|2>dw> </
(iii) There holds

dz
(19) Lrergss [,

Proof. In order to prove (3.2), we need to establish the following result. For
v € (0,min {2, n}), there exists a constant a(n, «, 8, u) such that

O u(@,t) [ o1 B
/Riﬂ atm‘ t dzdt = a(n, o, B, v) /R €171 £ (&) de.

m 2
0"u(x,t) ‘ 21— dadt.
otm

m 2
0" u(z,t) ’ 2= 1=V dodt.
otm

m 2
0" u(z,t) ’ £2m=1=Y gt
otm
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In fact, nothing that u(x,t) = pi * f(x), we can apply Proposition 2.2 to
om 2

deduce that
2m—1—v
/]R”“ pr u(z,t)| t dxdt

[oe] am
2m—1—v
/0 /nt Sem u(x,t)
oo am 2
2m—1—-v
/ " / A AEN T

2
m
2m7171/ 0

RTI

6tm
~ / €171 F(8)|2de.
RTI,

Then Theorem 3.2 can be proved in a way similar to that of Theorem 3.1. O

2

dedt

F(&)[2dedt

S Gs ()

dt) €| F(€)[2de

Theorem 3.3. Let f € HY/?>(R") with v € (0,min{2s,n}) and m € Nt.
Denote by u(z,t) = pi * f(x) the Caffarelli-Silvestre extension of f.
(i) There holds

(20) ( / F@ ) dm)l_y/n < /R L Vule, PR ddr,
(i) If |[f||z2mny = 1, there holds )
CI (Z [ |f<x>|21n<|f<x>|2>dx> S [ IVl e s,
¥
(iii) There holds

(22) | 1@

|z ™

d
2 &% < / V™, t)P42m 1 dadt.
RY T

Proof. For v = m, it can be deduced from [13, Theorem 3.3] that

/ V™, )22 ddt ~ / €12 (e, £) P21 dadt
R1+1 Ri+1

L
~ [ i re

Similarly to Theorem 3.1, Theorem 3.3 can be proved. O

2
—A) 2y, t)| 2 dadt
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Lemma 3.4 ([8, Theorem 6.5.]). Let v € (0,2) and p € [1,00) with vp/2 < n.
Then there exists a positive constant C = C(n,p,v) such that for any compactly
supported measurable function f: R™ — R,

P
: l
1oy <€ [ [ T oy,

where p* = p*(n,v) is the so-called “fractional critical exponent” and it equals
to np/(n —vp/2).

Theorem 3.5. Let 1 < g <o00,0<v<2n,1<p<2n/vandf € W;/Q(R”)ﬂ
LA(R™) with || f||any > 0. Then the inequality

1, ,v 1 | ()] |f ()] £l /2 gy
X — == 1 dr | < 3 .
p(( "o p> / 17T “(nfnLq(Rn) ””>~ S

Proof. Let
g(h) = hn ( / |f<x>1/hdx) ,

where g(h) is a convex function. For h > h; > 0, we can obtain

/ 1 —1Jgn )P | f(2)|d hi) —g(h
g =t ( [ 1) i s > )

Taking h =1/¢, hy = 1/p; and 0 < ¢ < p; < o0, by [14, Lemma 1], we have

@l [ 1@ pr 1)
23 X In d < .
@) e p(/ T (nfnm ) “’”) = o1 =4 e

For v > 0, Holder’s mequahty implies

1/p1
oo = ([ 15010 ) " da

v/p (p1—7)/p
<A o MU 2T
= |1 s L1 s

where 1/p5+1/ps =1, po := vph and p3 := (p1—7)/ph. For 1/p+(n—v/2)/n =
1+ 1/py, we get

NP

LP3(R™)

£ llom @y S ||f|Wu/2

Then we can choose p; = ng/(n—qv/2) € (q,00) for ps = g, v and p satisfying
v(1/p—v/(2n)) + (p1 —7)/ps = 1. Hence,

q
v/p1 (p1—7)/P1
/ | f(x)]9 N | f(z)]9 o p <|f u/z(Rn 11 ERs () )
z < n
R p1—4q Hf”Lq(Rn)

(R™)

" HfHLq(]Rw HfH%q(]Rn)
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< In ||f||W;;/2(Rn) .
~p—q I f1l La(rny

We can get pﬂ = D — O

— I, v
1—4q 2 tan

3 ||

When p = g and || f||La(gn) = 1, there holds the LP-logarithmic-type Sobolev
inequality.

Corollary 3.6. Let 0 < v < 2n, 1 < p < 2n/v, | € W;/Q(R”) with
||f||LP(]Rn) - 1. Then

o (g [ IFOP WP d2) S 1l

Lemma 3.7 ([10, Theorem 1.1]). Let n > 1 and 0 < v < 2. Then for all
fe w;/"’(Rn) in case 1 < p < 2n/v, and for all f € W;,'/2(R”/{O}) in case

p>2n/v
|P
L e [ L

In Theorem 3.1, we consider the scope of (p,v) when p = 2 and v €
(0,min{n,2}). Automatically, we can generalize inequalities in Theorem 3.1
to the general index p € [1,00) and v € (0,2n/p). Let u(z,t) = pi * f(x).
Following [2, Theorems 1.1 and 1.3], when p € (0,2), we know

1/p
(24) (/n+1 |V;”u(x,t)|ptpmp”/21d$dt> A~ |\f||A5,/z;(Rn).
T

In Theorem 3.2, p =2 and v € (0, min{2,n}), we have

o ([

where v € (0,2).

Let f € Afj’/pz(]R”) Using Lemma 3.4, we can obtain

m

atm

D 1/p
u(x,t)‘ tpmpu/Qld;cdt> ~ ||f|‘Ap,/p (Rn)?
v/2

) (n—pv/2)/np
(/ |f(1:)|np/(nfpu/ )dx) < ”f”j\ﬁ'/‘;(Rn)v 1<p<2n/y,

which implies that the following Sobolev trace-type inequalities: for f €
A’Z’/T'Z(R") with 1 <p < 2n/v
(26)

1/p
£l Lopsn-prr2) @ny S (/ L Vi, t)lptm"_”"/Q_ldldt) , v € (0,min{2, 2n/p}).
Ry
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b,p

U/z(]R”) again, we can

Applying the fractional Sobolev inequality to f € A
get for 1 < p < 2n/v,

(/ | fa) |2/ (v =pv/2) g

This indicates that
[ ]

(n—pv/2)/np
) S I llaz s n)-

m

p
S0 tmP=1=P/2gadt, v € (0, min{2,2n/p}),

u(z,t)

an/(n—pu/z)(Rn) 5/

R
where f € Ag’/pQ(]R") W%th 1<p<2n/v.

Moreover, let f e AP 7’2(]1%")7 there holds the logarithmic-type Sobolev in-
equality (Corollary 3.6), when || f||z»rn) = 1, v € (0,2n/p) and p € (1,2n/v)

- (Z /]R |f(x)|p1n(|f(x)|p)d96> S I llazs @ny:

and the fractional Hary inequality with v € (0,2) and p € [1,2n/8] (Lemma

3.7):
F@E N
(/ |2 dz ) Sl @e-

Applying (26), we can establish the logarithmic and Hardy trace-type inequal-
ities for general p with v in a similar range. Thus, Theorems 3.1 and 3.2 can
be generalized to p > 1.

Definition. Assume that o: RT‘I — R, is a positive measurable function.
Denote by LP (Riﬂ, o) the weighted Lebesgue space of all measurable functions
f Ry — R with

1/p
Hf||LP(R1+1,a) = </Ri+1 |f(x,t)|p0'(m,t)dxdt> < oo.
Let
—1/n
@p(f, U) = An’p (/Sn1 V§f||L:l(Ri+17o_)d§) )

where A, ;, is a constant depending on n, p.

The following affine Sobolev type inequality was obtained by Haddad,
Jiménez and Montenegro [11].

Theorem 3.8 ([11, Theorem 1.1]). Define a function o on R as o(z,t) ==
'Y (z,t) e RYT. Lety>0,1<p<n+v+1 and p3 = p(n+~y+1)/(n+
v+ 1 —p). There exists a sharp constant J(n,p,v) such that

(27)

(v+1)/(nty+1)
))n/(n+v+1)

Hg(a ')HLPfy(RiJrl)ﬂ < J(nvpa 7)(610(970' ot (" )

’ 99

Lp (R o)
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Moreover, in (27), the equality holds if

&
(28) gla.t) = 4 (1416104 4 | Afw — )| a1/m) CH 20"
1]§+1(5t,A(I - l’o)), b= 17

where (c,|8],20,A) € R x Ry x R® x GL,, and 1% is the characteristic
function of the unit ball in R™"*t' and GL,, denotes the set of all invertible real
n X n-matrices.

Theorem 3.9. Let f € C§°(R™) and its time-space fractional extension u(z,t)

=pi * f(z) whenv > 1. Forp= %7 m € N, there holds

< om ot n/(n+v+2m) gmt1
=2y = (GP (aTm“’t ’ )) HWU(*)
Proof. From Proposition 2.3, we know

IO FOR A & ) sy

when v > 2m — 2s — 1. Then, let y =v +2m —1 > 2m — 2s — 1. By Theorem
3.8, we can obtain ¢ :=t7 = t*+2m~1 and

v/(n+v+2m)

Lp(]Ri‘Fl,tuﬁ»Z»nfl)

f 1 =2y
H(=A)""* f]| L2 zn

/ RAGE
Rn
[

Q

%

W“('v )

L2(RTH )
NN G DR
(@p (8tmu’t +2m 1)> Hathrlu(U )

Now, we prove (7) by use of the Caleson measure characterization of Q type
spaces Qo (R™) obtained in [7]. For 0 < a < 1, Q(R™) is defined as the set of
all locally integrable functions f such that

v/(n+v+2m)

N

LP(R1+17tU+2m,71) |

[f (@) = fW)P

o ylri2a dxdy < oo,

29) ey = supeD) " [

1J1

where the symbol sup denotes the supremum taken over all cubes I with the
I

edge length ¢(I) and the edges parallel to the coordinate axes in R™. By the aid

of Hausdorff capacities and tent spaces, Dafni and Xiao [7] proved the following
equivalent characterization of @, (R™).
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Theorem 3.10. Given a C* real-valued function ¥ on R™ with
v e LNRY), [$(@)] S (1+ |z)~" D, 77/1( )da

Let ii(x) :=t="p(x/t). Then f € Q,/2(R"™) if and only if
/2

sup / / [y % f(2))? "V dadt < 00.
zoER™,r€(0,00) ly—zo|<r

Theorem 3.11. Suppose that v € (0, min {n,2s + 2v}) and v > max{1—s,0}.
Let u(x,t) := pf = f(x). Then there exists a constant C' > 0 such that (7) holds.

Proof. Take ¢y(z) := t™ & (—A)?/?p;(z). We can obtain
8m

UelEt) = 9(60) = (HEN 5 Galw)] Ly
Hence we set
)= | DQe s,
by (11), where
\am<{w”“f*m
~€FTEH, t — 0o and V6 > 0.

Let 20 = —n — s — v — 3, we can obtain

vl < [ e

1 ')
s/mwwwww+/|w%m5L
0 1

For |z| <1, we get

1
<1 on+l <—
Below we assume |z| > 1. For j = Nt N [1,n]
|2 ()] S / 1T 7 o etdg| + |£]572H —— o e dg
’ ~ e a5t €11 ogr
_ont .ot
5 ew: f s+'yd§ ew: f s— 25+’yd§
‘/fﬂ 35”“' | g>1 E”“' |
1 L(n+1)/2]
< / Z §n+1 k|§|9+'y 2(n+1)+2k+n— 1d|§|
00 L n+1)/2J

/ Z g;LJrlfk‘§|s—26+'y—2(n+1)+2k+n—1d|§|
k=0
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<n+1 /2] [(n+1)/2]

< / LY / €[ r=20+k=2 g

Letting 26 = s+y—n—1 and v > max{0, 1 — s}, we can obtain \m"“ P(z)|] S 1.
For |z| > 1, we get
1 1
< < _
|7/)($)| ~ |£L’|n+1 ~ (1 + ‘.’E|)n+1

Then we can verify that 1 satisfies the conditions of Theorem 3.10. Hence it
holds

e (o o[
wueRn,re(o,oo) |ly—mo|<r

As Qo (R™) is a subspace of BMO(R™), it is obvious that | f|zmo < | fllq.-
We can deduce from the equivalent norm:

1
1 llzao = sup ( [ 15 - fzdx)
r \|J;
(n—v)/(2n)
]‘ n n—v
~ sup (/If(w)—f12 / >dx)
r \M|J;
that

(n—v)/(2n)
1 n n—v
sup</|f(:v)—f12 /( )dx)
r \MlJ;

S flsao < lfllq.

r
. v—mn
hS sup r / / —
zo€R™,r€(0,00) 0 Jly—=zol<r
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9 1/2
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