DOI QR코드

DOI QR Code

Long term groundwater quality change using electrical conductivity and nitrate in the Geum River Basin, South Korea

금강유역의 전기전도도와 질산염을 이용한 장기적인 지하수 수질변화

  • 아거수아모스 (국민대학교 건설시스템공학과) ;
  • 이재범 (국민대학교 건설시스템공학과) ;
  • 주신영 (국민대학교 건설시스템공학과) ;
  • 한연경 (국민대학교 건설시스템공학과) ;
  • 양정석 (국민대학교 건설시스템공학과)
  • Received : 2023.12.04
  • Accepted : 2024.01.29
  • Published : 2024.02.29

Abstract

The study has examined alterations in groundwater quality by investigating the influence of rainfall on electrical conductivity (EC) and nitrate concentration in the groundwater of the Geum River Basin in South Korea. Mann Kendall and Sen's Slope estimator were employed to analyze the trends and estimate the trend's magnitude. The administrative map of the study area was utilized to assess the trends of these parameters within each administrative region. Seventeen years (from 2005 to 2021) of data on EC, groundwater levels (GWL), precipitation, and six years (from 2015 to 2020) of nitrate concentration data were utilized for this analysis. The results indicate that, in most administrative regions, there has been an increase in nitrate concentration, and EC, whereas precipitation has seen a slight decrease in a downstream and an increasing trend in upstream. The correlation coefficients calculated between these parameters reveal that there is no direct impact of precipitation on nitrate and EC, but a negative correlation was observed between GWL and EC. The most significant increasing trend in nitrate concentration was observed in two districts (Iksan and Gunsan ), which correspond to regions with significant agricultural activity; about 50% of these districts area are used for agricultural activities.

본 연구는 금강 유역 지하수 대수층에서 강우가 전기전도도(EC)와 질산염 농도에 미치는 영향을 분석하기 위하여 지하수위와 수질의 변동을 조사하였다. Mann Kendall과 Sen's Slope 추세 분석 기법을 사용하여 추세를 분석하고 추세의 크기를 추정하였고, 적용 된 추세 분석 기법은 연구 지역의 각 행정구역 내에서 이러한 매개변수의 추세를 평가하는 데 사용되었다. EC, 지하수 수위(GWL), 강수량에 대한 최근 17년 간(2005년~2021년)의 데이터와 최근 6년 간(2015년~2020년까지)의 질산염 농도 데이터가 이 분석에 사용되었다. 그 결과 대부분의 행정구역에서 질산염 농도와 EC가 증가한 반면 강수량은 하류에서 약간 감소하고 상류에서 증가하는 추세를 보였다. 이 매개변수들 사이에 계산된 상관계수는 강수량이 질산염과 EC에 미치는 직접적인 영향은 없지만 GWL과 EC 사이에는 음의 상관관계가 관찰되었다. 질산염 농도의 가장 중요한 증가 추세는 농업 활동이 많은 지역에 해당하는 지역에서 나타나며, 약 50%가 농업활동에 종사하고 있는 익산 및 군산 지역에서 대표적으로 나타났다.

Keywords

Acknowledgement

This research was supported by the Korea Environment Industry and Technology Institute (KEITI) through "R&D Program for Innovative Flood Protection Technologies against Climate Crisis Project", funded by Korea Ministry of Environment (MOE) (2022003460001).

References

  1. Agarwal, S., Suchithra, A., and Singh, S.P. (2021). "Analysis and interpretation of rainfall trend using Mann Kendall's and Sen's slope method." Indian Journal of Ecology, Vol. 48, No. 2, pp. 453-457.
  2. Bloomfield, J.P., Williams, R.J., Gooddy, D.C., Cape, J.N., and Guha, P.M. (2006). "Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater - a UK perspective." Science of the Total Environment, Vol. 369, No. 1-3, pp. 163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
  3. Byeon, S.-D., Noh, Y.-J., Lim, K.-J., Kim, J.-G., Kim, D.-J., and Hong, E.-M. (2020). "Analysis of water quality fluctuations in upstream Namhan River watershed using long-term statistical analysis. Journal of The Korean Society of Agricultural Engineers, Vol. 62, No. 5, pp. 15-26. doi: 10.5389/KSAE.2020.62.5.015
  4. Choi, H., Koh, D.C., and Yoon, Y.Y. (2023). "Spatial investigation of water quality and estimation of groundwater pollution along the main stream in the Geum River Basin, Korea." Environmental Geochemistry and Health, Vol. 45, pp. 6387-6406. doi: 10.1007/s10653-023-01643-3
  5. Choi, H., Lee, C.M., Koh, D.C., and Yoon, Y.Y. (2021). "Recharge and spatial distribution of groundwater hydrochemistry in the Geum River Basin South Korea." Journal of Radioanalytical and Nuclear Chemistry, Vol. 330, No. 2, pp. 397-412. https://doi.org/10.1007/s10967-021-07807-8
  6. de Ruijter, F.J., Boumans, L.J.M., Smit, A.L., and van den Berg, M. (2007). "Nitrate in upper groundwater on farms under tillageas affected by fertilizer use, soil type and groundwater table." Nutrient Cycling in Agroecosystems, Vol. 77, pp. 155-167. https://doi.org/10.1007/s10705-006-9051-9
  7. Ducci, D., Della Morte, R., Mottola, A., Onorati, G., and Pugliano, G. (2019). "Nitrate trends in groundwater of the Campania region (southern Italy)." Environmental Science and Pollution Research, Vol. 26, pp. 2120-2131. doi: 10.1007/s11356-017-0978-y
  8. Ershad, M., Keshtkar, A., Hosseini, S., and Afzali, A. (2021). "Analysis of temporal trend of groundwater quality using nonparametric Mann-Kendall and Sen's methods (Case study: Yazd-Ardakan Plain)." Geography and Environmental Planning, Vol. 32, No. 4, pp. 87-106. doi: 10.22108/gep.2021.127620.1404
  9. Frollini, E., Preziosi, E., Calace, N., Guerra, M., Guyennon, N., Marcaccio, M., Menichetti, S., Romano, E., and Ghergo, S. (2021). "Groundwater quality trend and trend reversal assessment in the European water framework directive context: An example with nitrates in Italy." Environmental Science and Pollution Research, Vol. 28, pp. 22092-22104. doi: 10.1007/s11356-020-11998-0
  10. Green, C.T., and Bekins, B.A. (2010). "Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States." Journal of Environmental Quality, Vol. 39, No. 2, pp. 484-494.
  11. Groppo, J.D., de Moraes, J.M., Beduschi, C.E., Genovez, A.M., and Martinelli, L.A. (2008). "Trend analysis of water quality in some rivers with different degrees of development within the Sao Paulo State, Brazil." River Research and Applications, Vol. 24, pp. 1056-1067. doi: 10.1002/rra.1091
  12. Hirsch, R.M., and Slack, J.R. (1984). "A nonparametric trend test for seasonal data with serial dependence." Water Resources Research, Vol. 20, No. 6, pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  13. Jeon, C., Raza, M., Lee, J.-Y., Kim, H., Kim, C.-S., Kim, B., Kim, J.-W., Kim, R.-H., and Lee, S.-W. (2020). "Countrywide groundwater quality trend and suitability for use in key sectors of Korea." Water, Vol. 12, No. 4, 1193. doi: 10.3390/w12041193
  14. Korean Statistical Information Service (KOSIS) (2023). Data of population and housing census from 2019 to 2022, accessed on 10 May 2023, .
  15. Kumar, A., Xagoraraki, I., and Kannan, K. (2010). "Occurrence and removal of pharmaceuticals and endocrine disruptors in Southwestern Ontario wastewater treatment plants." Water Research, Vol. 44, No. 17, pp. 4968-4978.
  16. Lee, B.J., and Moon, S.H. (2008). "Integrated approach for evaluating the characteristics of seawater intrusion using factor analysis and time series analysis: Seocheon-Gunsan area." Journal of the Geological Society of Korea, Vol. 44, No. 2, pp. 219-232. (in Korean with English abstract).
  17. Lee, J. (2011). "Environmental issues of groundwater in Korea: Implications for sustainable use." Environmental Conservation, Vol. 38, No. 1, pp. 64-74. doi: 10.1017/S0376892911000087
  18. Lee, J., Jung, C., Kim, S., and Kim, S. (2019). "Assessment of climate change impact on future groundwater-level behavior using SWAT groundwater-consumption function in Geum River Basin of South Korea." Water, Vol. 11, No. 5, 949. doi: 10.3390/w11050949
  19. Li, D.F., Zhai, Y.Z., Lei, Y., Li, J., Teng, Y.G., and Lu, H. (2021). "Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain Northeast China." Ecotoxicology and Environmental Safety, Vol. 208, 111524. doi: 10.1016/j.ecoenv.2020.111524
  20. Lopez, B., Baran, N., and Bourgine, B. (2015). "An innovative procedure to assess multi-scale temporal trends in groundwater quality: Example of the nitrate in the Seine-Normandy basin, France." Journal of Hydrology, Vol. 522, pp. 1-10. doi: 10.1016/j.jhydrol.2014.12.002
  21. Mahanta, A.R., Rawat, K.S., Singh, S.K., Sanjeevi, S., and Mishra, A.K. (2022). "Evaluation of long-term nitrate and electrical conductivity in groundwater system of Peninsula, India." Applied Water Science, Vol. 12, 17. doi: 10.1007/s13201-021-01568-1
  22. Mann, H.B. (1945). "Nonparametric tests against trend." Econometrica, Vol. 13, pp. 245-259. doi: 10.2307/1907187
  23. Mendizabal, I., Baggelaar, P.K., and Stuyfzand, P.J. (2012). "Hydrochemical trends for public supply well fields in The Netherlands (1898-2008), natural backgrounds and upscaling to groundwater bodies." Journal of Hydrology, Vol 450-451, pp. 279-292. https://doi.org/10.1016/j.jhydrol.2012.04.050
  24. Moon, S.H., Lee, B.J., Park, K.G., and Ko, K.S. (2009). "Hydrogeochemical characteristics and occurrences of high-saline ground water at Seocheon area." Korea Economic and Environmental Geology, Vol. 42, No. 3, pp. 235-246. (in Korean with English abstract).
  25. Noubactep, C., and Care, S. (2018). "Industrial effluents and mine drainage on water quality in the Arlit region, Niger." Environmental Earth Sciences, Vol. 77, No. 8, 320.
  26. Onate, J.J., and Pou, A. (1996). "Temperature variations in Spain since 1901: A preliminary analysis." International Journal of Climatology, Vol. 16, No. 7, pp. 805-815.
  27. Przydatek, G., and Kanownik, W. (2021). "Physicochemical indicators of the influence of a lined municipal landfill on groundwater quality: A case study from Poland." Environmental Earth Sciences, Vol. 80, 456. doi: 10.1007/s12665-021-09743-y
  28. Psaropoulou, E.T., and Karatzas, G. (2014). "Pollution of nitrates contaminant transport in heterogeneous porous media: A case study of the coastal aquifer of Corinth, Greece." Global Nest Journal, Vol. 16, pp. 9-23.
  29. Ravbar, N., Vrhovsek, D., and Dreu, D. (2018). "Urban groundwater quality: A case study from Ljubljana (Slovenia)." Environmental Monitoring and Assessment, Vol. 190, No. 12, 750.
  30. Sen, P.K. (1968). "Estimates of the regression coefficient based on Kendall's tau." Journal of the American Statistical Association, Vol. 63, No. 324, pp. 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  31. Serio, F., Miglietta, P.P., Lamastra, L., Ficocelli, S., Intini, F., De Leo, F., and De Donno, A. (2018). "Ground water nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia region (Italy)." Science of the total Environment, Vol. 645, pp. 1425-1431. https://doi.org/10.1016/j.scitotenv.2018.07.241
  32. Stigter, T.Y., Carvalho Dill, A.M.M., and Ribeiro, L. (2011). "Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater." Environmental Science & Technology, Vol. 45, No. 20, pp. 8674-8682. doi. 10.1021/es201798g
  33. Todd, D.K., and Mays, L.W. (2005). Groundwater hydrology (3rd ed.). John Wiley and Sons, Inc., Hoboken, p. 652.
  34. Tutmez, B., Hatipoglu, Z., and Kaymak, U. (2006). "Modelling electrical conductivity of groundwater using an adaptive neurofuzzy inference system." Computers & Geosciences, Vol. 32, No. 4, pp. 421-433. doi: 10.1016/j.cageo.2005.07.003