DOI QR코드

DOI QR Code

Hydrogeological Characteristics of Groundwater in Small Watershed of the Nakdong River Basin

낙동강 하류 소유역의 지하수와 하천수의 수리지질학적 특성

  • Sieun Kim (Department of Geological Sciences, Pusan National University) ;
  • SeongYeon Jung (Department of Geological Sciences, Pusan National University) ;
  • MoonSu Kim (National Institute of Environmental Research) ;
  • Youn-Tae Kim (National Institute of Environmental Research) ;
  • Yong-Hoon Cha (Geogreen 21) ;
  • Chung-Mo Lee (Department of Geological Sciences, Pusan National University)
  • 김시은 (부산대학교 지질환경과학과) ;
  • 정성연 (부산대학교 지질환경과학과) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 김연태 (국립환경과학원 토양지하수연구과) ;
  • 차용훈 (지오그린21) ;
  • 이충모 (부산대학교 지질환경과학과)
  • Received : 2024.02.19
  • Accepted : 2024.02.28
  • Published : 2024.02.29

Abstract

Recently, the vulnerability of water resources has been increasing owing to climate change, highlighting the importance of groundwater. In particular, the Nakdong River Basin, located in the southern part of Korea, experiences frequent water scarcity phenomena, such as droughts. This study analyzed the hydrogeological characteristics of the study area by examining groundwater and stream water in the Gwangrye Stream, downstream of the Nakdong River Basin, in August and October 2023. Therefore, we collected samples from 54 groundwater wells and five streams for water quality analysis. The results of the field tests indicated an increasing trend in electrical conductivity from upstream to downstream in the study area. Laboratory analyses confirmed that the concentration of Na increased from upstream to downstream more than that of Ca. In conclusion, both stream water and groundwater were influenced by anthropogenic contamination. These changes were closely related to land use in the study area. The upstream areas are primarily composed of forests, whereas the downstream areas are composed of industrial complexes, wastewater treatment facilities, and agricultural areas, which are likely to affect both stream water and groundwater.

기후변화에 따라 수자원의 취약성이 증가하고 있고, 그로 인해 지하수 자원의 필요성이 강조되고 있다. 특히, 낙동강권역이 자리 잡은 한반도 남부는 매년 봄 가뭄과 같은 물 부족 현상이 빈번하게 발생하고 있다. 물 부족의 대안으로 지하수 자원 이용이 대두되고 있으나, 지하수 자원의 활용에는 수질 안정성이 반드시 요구된다. 이 연구는 2023년 8월과 10월, 2회에 걸쳐 낙동강 하류 광려천 유역을 대상으로 지하수 관정 총 54개소와 하천수 총 5개의 지점에서 시료를 채취하여 현장 수질 및 실내 수질 분석을 수행하였다. 현장에서 측정한 전기전도도의 값은 지하수와 하천수 모두 연구 지역 수계 하류로 갈수록 농도가 증가하는 경향을 보여 준다. 이는 하류의 농업 활동이 하천수에 직접적으로 유입됨을 지시한다. 실내 수질 분석 결과 연구 지역의 수질 유형은 주로 [Ca-HCO3] 유형이 가장 많고, [Ca-SO4] 유형이 그 뒤를 이었다. 8월과 10월 시간에 따른 수질 유형의 변화를 확인하면, Ca 함량이 우세한 지역이 Na 함량이 우세한 지역으로 변화하고, 이러한 지하수 관정은 주로 하류에 위치하고 있음을 확인하였다. 결국 연구 지역 하류의 하천수·지하수의 농도 변화는 공장단지, 폐수 처리시설, 농경지의 분포 현황 및 낙동강 하류의 유입과 밀접한 관계가 있고, 이를 통해 인위적인 오염이 발생하였음을 유추할 수 있다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부 한국연구재단의 생애 첫 연구사업(No. RS-2023-00210810) 및 환경부 국립환경과학원의 지원(NIER-2023-04-02-127)을 받아 수행되었습니다.

References

  1. Appelo, C.A.J. and Postma, D., 2004, Geochemistry, Groundwater and Pollution. CRC press, Florida, USA, 683 p.
  2. Bae J.S., Kim G.B., Cha E.J. and Shin K.H., 2014, Comparison of groundwater qualities at Alluvium of Nakdong Riverside. Proceedings of The Korean Society of Engineering Geology 2023 Fall Conference, 2, 343-346. (in Korean)
  3. Banks, D., Reimann, C., Royset, O., Skarphagen, H. and Saether, O. M., 1995, Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters. Applied Geochemistry, 10(1), 1-16.
  4. Choi, S.-G., Park, M.-E. and Choi, S.-H., 1994, Chemical Variations of Electrum from Gold and/or Silver Deposits in the Southeast Korea. Economic and Environmental Geology, 27(4), 325-333.
  5. EGIS (Environmental Geographic Information Service), Land cover map. Ministry of Environment, http://egis.me.go.kr/main.do (2023)
  6. Han, W.S., Woo, N.C., Lee, K.C. and Lee, G.-S., 2002, Watershed Classification Using Statistical Analysis of water Quality Data from Muju area. Korean Society of Soil and Groundwater Environment, 7(3), 19-32.
  7. Hounslow, A., 1995, Water quality data: analysis and interpretation. CRC press, Florida, USA, 416 p.
  8. Hyun, Y.J., Jeong, A.Y., Cha, E.-J., Kim, C.W., Han, H.J. and Moon, H.J., 2022, Establishing Institutional Basis for Efficient Use and Allocation of Groundwater. Korea Environment Institute, Research Report, 163 p.
  9. Im, H.-C., 2005, Relation of Groundwater Quality to Land Use on Ulsan Urban area. Korean Spciety of Earth and Exploration Geophysicists, 8(3), 145-152.
  10. Jeong, D.-H., Kim, M.-S. and Lee, Y.-J., 2011, Hydrogeochemical Characteristics and Natural Radionuclides in Groundwater for Drinking-water Supply in Korea. Korean Society of Soil and Groundwater Environment, 16(6), 133-142.
  11. Jung, K.Y., Cho, S., Hwang, S.Y., Lee, Y., Kim, K. and Na, E.H., 2020, Identification of High-Priority Tributaries for Water Quality Management in Nakdong River Using Neural Networks and Grade Classification. Sustainability, 12(21), 9149.
  12. Kim, J.-H., Baek, K.H., Kim, H.-S., Kim, J.-S. and Yun, S.-T., 2003, Hydrogeochemical characteristics of Nakdong River in Haman-Gun, Chilseo for developing bank-filtrated water. Korean Society of Soil and Groundwater Environment, Sept.01, 561-564. (in Korean)
  13. Kim, J.T., Park, S.J., Kang, M.A., Choo, C.O. and Jeong, G.C., 2007, Analysis on Statistical Relationship between Groundwater Quality and Geology. The korean society of engineering geology, 17(3), 445-453.
  14. Kim, R.H., Kim, J.H., Ryu, J.S. and Chang, H.W., 2006, Salinization properties of a shallow groundwater in a coastal reclaimed area, Yeonggwang, Korea. Environmental Geology, 49, 1180-1194.
  15. Kim, S.H., 2014, Study on characteristic of ground-water quality and induction of management plan using background water concentration. Unpublished M.S. thesis, Pukyong National University, Busan, Korea, 169 p.
  16. Kim, T.-W., Yang, H.-S., Park, B.-W. and Yoon, J.-S., 2018, Study on Water Level and Salinity Characteristics of Nakdong River Estuary Area by Discharge Variations at Changnyeong-Haman Weir(1). Journal of Ocean Engineering and Technology, 32(5), 361-366.
  17. Ko, K.-S., Ahn, J.-S., Suk, H.-J., Lee, J.-S. and Kim, H.-S., 2008, Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area. Korean Society of Soil and Groundwater Environment, 13(6), 72-84.
  18. Lee, C.-M., Hamm, S.-Y., Cheong, J.-Y., Kim, K., Yoon, H., Kim, M.S. and Kim, J., 2020, Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed. Environmental Research, 184, 109313.
  19. Lee, C.-M., Choi, H., Kim, Y., Kim, M.S., Kim, H.K. and Hamm, S.-Y., 2021, Characterizing land use effect on shallow groundwater contamination by using self-organizing map and buffer zone. Science of the Total Environment, 800, 149632.
  20. Lee, C.-M., Kim, Y., Kim, M.S., Kim, H.-K. and Hamm, S.-Y., 2022, Characterizing shallow groundwater contamination depending on different land use types. Episodes, 45(4), 403-415.
  21. Lee, J.Y., Choi, J.C., Yi, M.J., Kim, J.W., Cheon, J.Y., Choi, Y.K., Choi, M.J. and Lee, K.K., 2005, Potential groundwater contamination with toxic metals in and around an abandoned Zn mine, Korea. Water, air, and soil pollution, 165, 167-185.
  22. Lloyd, W. and Heathcote, J.A.A., 1985, Natural Inorganic Hydrochemistry in Relation to Groundwater, an Introduction. Clarendon Press, Oxford, UK, 296 p.
  23. McKenzie, J. M., Siegel, D. I., Patterson, W. and McKenzie, D. J., 2001, A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection. Hydrogeology Journal, 9, 265-272.
  24. Ministry of Environment and Korea Water Resources Corporation, 2022, Groundwater annual report, 368 p.
  25. Ministry of Environment and Korea Institute of Geoscience and Mineral Resources, 2018, Report for basic research of groundwater of Haman area, 259 p.
  26. Park, H.-G., Lee, C.-S., Kim, Z.H. and Ki, S.J., 2020, A Study of Characterization of Groundwater Quality and Its Correlation among Eight Variables in Western Gyeongnam Province. Journal of Korean Society of Water Science and Technology, 28(1), 19-27.
  27. Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses. American Geophysical Union Transactions, 25, 914-928.
  28. Ritzi Jr, R.W., Wright, S.L., Mann, B. and Chen, M., 1993, Analysis of temporalvariability in hydrogeochemical data used for multivariateanalyses. Groundwater, 31(2), 221-229.
  29. Seo, Y.G., 2015, A Study on Geochemical Characteristics and Statistical Interpretations of Groundwater using Long-Term Groundwater Monitoring Data. Unpublished Ph.D. dissertation, The University of Suwon, Hwaseong, Korea, 111 p.
  30. Stiff Jr, Henry A., 1951, The interpretation of chemical water analysis by means of patterns. Journal of petroleum technology, 3(10), 15-3.
  31. Todd, D.K., 1959, Annotated bibliography on artificial recharge of ground water through 1954. US Government Printing Office.
  32. Um, S.H., Choi, H.I., Son, J.D., Shin, S.C. and Yun, H.S., 1983, Geological and Geochemical studies on the Gyeongsang Supergroup in the Gyeongsang Basin. Korea Institute of Energy and Resources Bulletin, 36, 124 p. (in Korean with English abstract)