TWO SUBRAHMANYAM TYPE OF COMMON FIXED POINT THEOREMS IN COMPLETE METRIC SPACES

Seung Hyun Kim ${ }^{\text {a }}$ and Mee Kwang Kang ${ }^{\text {b,* }}$

Abstract

In this paper, we introduce new types of weakly Picard operators being available to a much wider class of maps, and prove common fixed point theorems of Subrahmanyam type for two these weakly Picard operators in the collection of singlevalued and multi-valued mappings in complete metric spaces. Our results extend and generalize the corresponding fixed point theorems in the literature $[3,6]$.

1. Introduction

Suzuki [8] categorized fixed point theorems on metric spaces (X, d) into the following four types;
(1) Leader type [4]: T has a unique fixed point and $\left\{T^{n} x\right\}$ converges to the fixed point for all $x \in X$.
(2) Unnamed type : T has a unique fixed point and $\left\{T^{n} x\right\}$ does not necessarily converge to the fixed point for all $x \in X$.
(3) Subrahmanyam type [7]: T may have more than one fixed point and $\left\{T^{n} x\right\}$ converges to a fixed point for all $x \in X$.
(4) Caristi type $[1,2]: T$ may have more than one fixed point and $\left\{T^{n} x\right\}$ does not necessarily converge to a fixed point for all $x \in X$.
Khojasteh et. al. [3] introduced two types of fixed point theorems in the collection of multi-valued and single valued mappings and proved them, which belongs to (3). One year later, Rhoades [6] extended the results of Khojasteh et. al. [3] to two maps and to a much wider class of maps.

[^0]Motivated by the previous works, in this paper, we establish two Subrahmanyam types of common fixed point theorems in the collection of single-valued and multivalued mappings in metric spaces, which generalize the corresponding results of Rhoades [6].

2. Common Fixed Point Theorem for Single-valued MappingS

First of all, we prove the following lemma to obtain a common fixed point theorem.
Lemma 2.1. Let (X, d) be a complete metric space and let S and T be self-mappings on X satisfying, for all $x, y \in X$,

$$
\begin{equation*}
\varphi(d(S x, T y)) \leq N(x, y) \cdot \varphi(m(x, y))-\psi(m(x, y)) \tag{2.1}
\end{equation*}
$$

where
(2.2) $\quad N(x, y)=\frac{\max \{d(x, y), d(x, S x)+d(y, T y), d(x, T y)+d(y, S x)\}}{d(x, S x)+d(y, T y)+1}$,

$$
\begin{equation*}
m(x, y)=\max \left\{d(x, y), d(x, S x), d(y, T y), \frac{d(x, T y)+d(y, S x)}{2}\right\} \tag{2.3}
\end{equation*}
$$

$\varphi:[0, \infty) \rightarrow[0, \infty)$ a non-decreasing continuous function and $\psi:[0, \infty) \rightarrow[0, \infty)$ a continuous function with $\psi(t)=0$ if and only if $t=0$. Then each fixed point of S is a fixed point of T, and vice versa.

Proof. Let p is a fixed point of S and suppose that p is not a fixed point of T. From (2.2), we have
$N(p, p)=\frac{\max \{d(p, p), d(p, S p)+d(p, T p), d(p, T p)+d(p, S p)\}}{d(p, S p)+d(p, T p)+1}=\frac{d(p, T p)}{d(p, T p)+1}<1$
and, from (2.3),

$$
m(p, p)=\max \left\{d(p, p), d(p, S p), d(p, T p), \frac{d(p, T p)+d(p, S p)}{2}\right\}=d(p, T p)
$$

Substituting the above inequality and equality into (2.1), we get

$$
\begin{aligned}
\varphi(d(p, T p))=\varphi(d(S p, T p)) & \leq N(p, p) \cdot \varphi(m(p, p))-\psi(m(p, p)) \\
& <\varphi(d(p, T p))-\psi(d(p, T p))
\end{aligned}
$$

which implies that $\psi(d(p, T p))<0$. This contradicts the fact that the range of ψ is $[0, \infty)$. Therefore, p is a fixed point of T.

Similarly, it can be shown that, if q is a fixed point of T then it is also a fixed point of S.

Theorem 2.2. Assume that S and T satisfy the hypotheses of Lemma 2.1. Then (a) S and T have at least one common fixed point $p \in X$.
(b) For even natural number n, $\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to a common fixed point for $x \in X$.
(c) If p and q are distinct common fixed ponits of S and T, then $d(p, q) \geq \frac{1}{2}$.

Proof. (a) Let x_{0} be an arbitrary element of X and define $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{2 n+1}=S x_{2 n}, \quad x_{2 n+2}=T x_{2 n+1} \text { for } n \in \mathbb{N} \cup\{0\} \tag{2.4}
\end{equation*}
$$

Suppose that there exists $n \in \mathbb{N} \cup\{0\}$ such that $x_{2 n+1}=x_{2 n+2}$. Then, from (2.4), $x_{2 n+1}=x_{2 n+2}=T x_{2 n+1}$, thus $x_{2 n+1}$ is a fixed point of T. By Lemma 2.1, $x_{2 n+1}$ is a fixed point of S and so it is a common fixed point of S and T.

Similarly, if there exists $n \in \mathbb{N} \cup\{0\}$ such that $x_{2 n}=x_{2 n+1}$, then $x_{2 n}$ is a common fixed point of S and T.

Therefore, we assume that

$$
\begin{equation*}
x_{n} \neq x_{n+1} \text { for } n \in \mathbb{N} \cup\{0\} . \tag{2.5}
\end{equation*}
$$

From (2.1) and (2.4), we have

$$
\begin{align*}
\varphi\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) & =\varphi\left(d\left(S x_{2 n}, T x_{2 n+1}\right)\right) \\
.6) & \leq N\left(x_{2 n}, x_{2 n+1}\right) \cdot \varphi\left(m\left(x_{2 n}, x_{2 n+1}\right)\right)-\psi\left(m\left(x_{2 n}, x_{2 n+1}\right)\right) \tag{2.6}
\end{align*}
$$

Defining $d_{n}:=d\left(x_{n}, x_{n+1}\right)$, from (2.2), (2.4) and the metric triangle property,

$$
\begin{aligned}
N\left(x_{2 n}, x_{2 n+1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, S x_{2 n}\right)+d\left(x_{2 n+1}, T x_{2 n+1}\right), d\left(x_{2 n}, T x_{2 n+1}\right)\right. \\
& \left.+d\left(x_{2 n+1}, S x_{2 n}\right)\right\} /\left(d\left(x_{2 n}, S x_{2 n}\right)+d\left(x_{2 n+1}, T x_{2 n+1}\right)+1\right) \\
= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right), d\left(x_{2 n}, x_{2 n+2}\right)\right. \\
& \left.+d\left(x_{2 n+1}, x_{2 n+1}\right)\right\} /\left(d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)+1\right) \\
= & \frac{\max \left\{d_{2 n}, d_{2 n}+d_{2 n+1}, d_{2 n}+d_{2 n+1}\right\}}{d_{2 n}+d_{2 n+1}+1} \\
(2.7) \quad= & \frac{d_{2 n}+d_{2 n+1}}{d_{2 n}+d_{2 n+1}+1}:=\beta_{2 n},
\end{aligned}
$$

and

$$
\begin{align*}
m\left(x_{2 n}, x_{2 n+1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, S x_{2 n}\right), d\left(x_{2 n+1}, T x_{2 n+1}\right)\right. \\
& \left.\frac{d\left(x_{2 n}, T x_{2 n+1}\right)+d\left(x_{2 n+1}, S x_{2 n}\right)}{2}\right\} \tag{2.8}
\end{align*}
$$

$$
\begin{aligned}
= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& \left.\frac{d\left(x_{2 n}, x_{2 n+2}\right)+d\left(x_{2 n+1}, x_{2 n+1}\right)}{2}\right\} \\
= & \max \left\{d_{2 n}, d_{2 n+1}\right\}
\end{aligned}
$$

Substituting (2.7) and (2.8) into (2.6), since $d_{2 n} \neq 0$, we obtain the following inequality

$$
\begin{align*}
\varphi\left(d_{2 n+1}\right) & \leq \beta_{2 n} \cdot \varphi\left(\max \left\{d_{2 n}, d_{2 n+1}\right\}\right)-\psi\left(\max \left\{d_{2 n}, d_{2 n+1}\right\}\right) \\
& <\beta_{2 n} \cdot \varphi\left(\max \left\{d_{2 n}, d_{2 n+1}\right\}\right) \\
& =\beta_{2 n} \cdot \varphi\left(d_{2 n}\right) \tag{2.9}
\end{align*}
$$

If $\max \left\{d_{2 n}, d_{2 n+1}\right\}=d_{2 n+1}$ in the last formula, then the above inequality means $\left(1-\beta_{2 n}\right) \varphi\left(d_{2 n+1}\right)<0$. Since $0<\beta_{2 n}<1, \varphi\left(d_{2 n+1}\right)<0$, which contradicts the range of φ.

Applying the same method to $\varphi\left(d_{2 n}\right)$ instead of $\varphi\left(d_{2 n+1}\right)$ in (2.6), we have

$$
\begin{equation*}
\varphi\left(d_{2 n}\right)<\beta_{2 n-1} \cdot \varphi\left(d_{2 n-1}\right) \tag{2.10}
\end{equation*}
$$

Therefore, from (2.9) and (2.10), we have

$$
\varphi\left(d_{n}\right)<\beta_{n-1} \cdot \varphi\left(d_{n-1}\right)<\varphi\left(d_{n-1}\right)
$$

Since φ is non-decreasing,

$$
\begin{equation*}
d_{n}<d_{n-1} \text { for each } n \in \mathbb{N} \tag{2.11}
\end{equation*}
$$

On the other hand, for $n \in \mathbb{N}, \beta_{n}<\beta_{n-1}$. In fact, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{x+1}$ is increasing and $d_{n}+d_{n+1}<d_{n-1}+d_{n}$ so that we have, from (2.11),

$$
\frac{d_{n}+d_{n+1}}{d_{n}+d_{n+1}+1}<\frac{d_{n-1}+d_{n}}{d_{n-1}+d_{n}+1}
$$

and thus

$$
\begin{equation*}
\beta_{n}<\beta_{n-1} \text { for } n \in \mathbb{N} \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12), we have

$$
\begin{equation*}
d_{n}<\beta_{1} \cdot d_{n-1}<\beta_{1}^{n} \cdot d_{0} \tag{2.13}
\end{equation*}
$$

For any positive integers m, n with $m>n$, it follows from (2.13) that

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{i=n}^{m-1} d_{i}<\sum_{i=n}^{m-1} \beta_{1}^{i} \cdot d_{0} \\
& =\beta_{1}^{n} \cdot d_{0} \sum_{j=0}^{m-n-1} \beta_{1}^{j}<\frac{\beta_{1}^{n}}{1-\beta_{1}} d_{0}
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists $p \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=p$. Using (2.1)-(2.3), we have

$$
\begin{gathered}
N\left(x_{2 n}, p\right) \leq \max \left\{d\left(x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right)+d(p, T p), d\left(x_{2 n}, T p\right)\right. \\
\left.+d\left(p, x_{2 n+1}\right)\right\} /\left(d\left(x_{2 n}, x_{2 n+1}\right)+d(p, T p)+1\right) \\
m\left(x_{2 n}, p\right) \leq \max \left\{d\left(x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right), d(p, T p), \frac{d\left(x_{2 n}, T p\right)+d\left(p, x_{2 n+1}\right)}{2}\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
\varphi\left(d\left(x_{2 n+1}, T p\right)\right) & =\varphi\left(d\left(S x_{2 n}, T p\right)\right) \\
& \leq N\left(x_{2 n}, p\right) \cdot \varphi\left(m\left(x_{2 n}, p\right)\right)-\psi\left(m\left(x_{2 n}, p\right)\right)
\end{aligned}
$$

Taking the limit of both sides of the above inequalty as $n \rightarrow \infty$

$$
\varphi(d(p, T p)) \leq \frac{d(p, T p)}{d(p, T p)+1} \cdot \varphi(d(p, T p))
$$

which implies that $p=T p$. From Lemma 2.1, p is a fixed point of S.
(b) For $x \in X$, let $x_{1}=T x$. Define $x_{2 n}=S x_{2 n-1}$ and $x_{2 n+1}=T x_{2 n}$ for $n \in \mathbb{N}$. Then $\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to common fixed point of S and T.
(c) Suppose that p and q are distinct common fixed points of S and T. From (2.2) and (2.3), we obtain

$$
N(p, q)=\frac{\max \{d(p, q), d(p, S p)+d(q, T q), d(p, T q)+d(q, S p)\}}{d(p, S p)+d(q, T q)+1}=2 d(p, q)
$$

and

$$
m(p, q)=\max \left\{d(p, q), d(p, S p), d(q, T q), \frac{d(p, T q)+d(q, S p)}{2}\right\}=d(p, q)
$$

Thus, (2.1) becomes

$$
\begin{aligned}
\varphi(d(p, q)) & =\varphi(d(S p, T q)) \\
& \leq N(p, q) \cdot \varphi(m(p, q))-\psi(m(p, q)) \leq 2 d(p, q) \varphi(d(p, q))
\end{aligned}
$$

which implies that $(1-2 d(p, q)) \varphi(d(p, q)) \leq 0$. Hence, $d(p, q) \geq \frac{1}{2}$.

If we put $\varphi(t)=t$ and $\psi(t)=0$, then Theorem 2.2 can be modified as follows, which is the common fixed point theorem in [6].
Theorem 2.3. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

$$
d(S x, T y) \leq N(x, y) m(x, y) \text { for all } x, y \in X
$$

where

$$
N(x, y)=\frac{\max \{d(x, y), d(x, S x)+d(y, T y), d(x, T y)+d(y, S x)\}}{d(x, S x)+d(y, T y)+1}
$$

and

$$
m(x, y)=\max \left\{d(x, y), d(x, S x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\} .
$$

Then
(a) S and T have at least one common fixed point $p \in X$.
(b) For even natural number $n,\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to a common fixed point for $x \in X$.
(c) If p and q are distinct common fixed ponits of S and T, then $d(p, q) \geq \frac{1}{2}$.

Theorem 2.4. [3] Let (X, d) be a complete metric space, T selfmaps of X satisfying

$$
\begin{equation*}
d(T x, T y) \leq \frac{d(x, T y)+d(y, T x)}{d(x, T x)+d(y, T y)+1} d(x, y) \text { for all } x, y \in X \tag{2.14}
\end{equation*}
$$

Then
(a) T has at least one fixed point $p \in X$.
(b) $\left\{T^{n} x\right\}$ converges to a fixed point for $x \in X$.
(c) If p and q are distinct fixed ponits of T, then $d(p, q) \geq \frac{1}{2}$.

Proof. If we put $\varphi=I, \psi(t)=0$ and $S=T$ in (2.1), then the inequality (2.14) satisfies the hypotheses of Theorem 2.2 and so we obtain Theorem 2.4.

3. Common Fixed Point Theorem for Multi-valued Mappings

We shall need the following notations for a common fixed point theorem on multivalued mappings;

$$
\begin{aligned}
& C B(X)=\{A \mid A \text { is a nonempty closed and bounded subset of } X\}, \\
& D(a, B)=\inf \{d(a, b) \mid b \in B\} \text { for } a \in X, \\
& \delta(a, B)=\sup \{d(a, b) \mid b \in B\} \text { for } a \in X, \\
& H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(y, A)\right\} .
\end{aligned}
$$

Lemma 3.1 ([5]). Let $A, B \in C B(X)$, and let $x \in A$. Then, for each $\alpha>0$, there exists $y \in B$ such that

$$
d(x, y) \leq H(A, B)+\alpha .
$$

Lemma 3.2. Let (X, d) be a complete metric space and let S and T be multi-valued mappings from X into $C B(X)$ satisfying, for all $x, y \in X$,

$$
\begin{equation*}
\varphi(H(S x, T y)) \leq N(x, y) \cdot \varphi(m(x, y))-\psi(m(x, y)) \tag{3.1}
\end{equation*}
$$

where
(3.2) $N(x, y)=\frac{\max \{d(x, y), D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)\}}{\delta(x, S x)+\delta(y, T y)+1}$,

$$
\begin{equation*}
m(x, y)=\max \left\{d(x, y), D(x, S x), D(y, T y), \frac{D(x, T y)+D(y, S x)}{2}\right\} \tag{3.3}
\end{equation*}
$$

$\varphi:[0, \infty) \rightarrow[0, \infty)$ a non-decreasing continuous function with $\varphi(c t)=c \varphi(t)$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ a continuous function with $\psi(t)=0$ if and only if $t=0$. Then each fixed point of S is a fixed point of T, and vice versa.

Proof. Suppose that p is a fixed point of S. From (3.1) and the definition of H,

$$
\varphi(D(p, T p))=\varphi(H(p, T p))=\varphi(H(S p, T p)) \leq N(p, p) \cdot \varphi(m(p, p))-\psi(m(p, p)) .
$$

From (3.2) and (3.3), we have

$$
\begin{aligned}
N(p, p) & =\frac{\max \{d(p, p), D(p, S p)+D(p, T p), D(p, T p)+D(p, S p)\}}{\delta(p, S p)+\delta(p, T p)+1}=\frac{D(p, T p)}{\delta(p, T p)+1} \\
& \leq \frac{D(p, T p)}{D(p, T p)+1}:=\beta<1
\end{aligned}
$$

and

$$
m(p, p)=\max \left\{d(p, p), D(p, S p), D(p, T p), \frac{D(p, T p)+D(p, S p)}{2}\right\}=D(p, T p) .
$$

Therefore

$$
\begin{aligned}
\varphi(D(p, T p)) & \leq \beta \cdot \varphi(D(p, T p))-\psi(D(p, T p)) \\
& \leq \varphi(D(p, T p))-\psi(D(p, T p)),
\end{aligned}
$$

which implies that $\psi(D(p, T p)) \leq 0$. This contradicts the fact that the range of ψ is $[0, \infty)$. Therefore, p is a fixed point of T.

Similarly, it can be shown that, if q is a fixed point of T then it is a fixed point of S.

Theorem 3.3. Assume that S and T satisfy the hypotheses of Lemma 3.2. Then (a) S and T have at least one common fixed point $p \in X$.
(b) For even natural number $n,\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to a common fixed point for $x \in X$.
(c) If p and q are distinct common fixed ponits of S and T, then $d(p, q) \geq \frac{1}{2}$.

Proof. (a) Let $x_{0} \in X$ and $x_{1} \in S x_{0}$. Define h_{n} by

$$
\begin{equation*}
h_{n}=\sqrt{\beta_{n}}=\sqrt{\frac{d_{n-1}+d_{n}}{d_{n-1}+d_{n}+1}} . \tag{3.4}
\end{equation*}
$$

From Lemma 3.1, for $0<h_{1}<1$, i.e. $\frac{1}{h_{1}}-1>0$, we can take $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \leq H\left(S x_{0}, T x_{1}\right)+\left(\frac{1}{h_{1}}-1\right) H\left(S x_{0}, T x_{1}\right)=\frac{1}{h_{1}} H\left(S x_{0}, T x_{1}\right) .
$$

In a similar manner, for $0<h_{2}<1$, we can take $x_{3} \in S x_{2}$ such that
$d\left(x_{2}, x_{3}\right)=d\left(x_{3}, x_{2}\right) \leq H\left(S x_{2}, T x_{1}\right)+\left(\frac{1}{h_{2}}-1\right) H\left(S x_{2}, T x_{1}\right)=\frac{1}{h_{2}} H\left(S x_{2}, T x_{1}\right)$.
Continuing this process, for $0<h_{2 n}<1$, we can take $x_{2 n+1} \in S x_{2 n}$ such that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq \frac{1}{h_{2 n}} H\left(S x_{2 n}, T x_{2 n-1}\right) \tag{3.5}
\end{equation*}
$$

and for $0<h_{2 n+1}<1$, we can take $x_{2 n+2} \in T x_{2 n+1}$ such that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{1}{h_{2 n+1}} H\left(S x_{2 n}, T x_{2 n+1}\right) . \tag{3.6}
\end{equation*}
$$

If there exists $n \in \mathbb{N}$ such that $H\left(S x_{2 n}, T x_{2 n-1}\right)=0$, then $S x_{2 n}=T x_{2 n-1}$, which implies that $x_{2 n} \in S x_{2 n}$, since $x_{2 n} \in T x_{2 n-1}$, and $x_{2 n}$ is a fixed point of S. By Lemma 3.2, $x_{2 n}$ is a fixed point of T. Similarly, if there exists $n \in \mathbb{N}$ such that $H\left(S x_{2 n}, T x_{2 n+1}\right)=0$, then $x_{2 n+1}$ is a common fixed point of S and T. Therefore, we assume that $H\left(S x_{2 n}, T x_{2 n-1}\right) \neq 0$ and $H\left(S x_{2 n}, T x_{2 n+1}\right) \neq 0$.

On the other hand, if there exists $n \in \mathbb{N}$ such that $x_{2 n}=x_{2 n+1}$, then, since $x_{2 n+1} \in S x_{2 n}, x_{2 n}$ is a fixed point of S. By Lemma $3.2, x_{2 n}$ is a fixed point of T. Similarly, if there exists $n \in \mathbb{N}$ such that $x_{2 n+1}=x_{2 n+2}$, then $x_{2 n+1}$ is a common fixed point of S and T. Therefore, we also assume that $x_{n} \neq x_{n+1}$ for $n \in \mathbb{N}$.

From (3.2), (3.3) and (3.4), we get

$$
\begin{align*}
N\left(x_{2 n}, x_{2 n-1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), D\left(x_{2 n}, S x_{2 n}\right)+D\left(x_{2 n-1}, T x_{2 n-1}\right),\right. \\
& \left.D\left(x_{2 n}, T x_{2 n-1}\right)+D\left(x_{2 n-1}, S x_{2 n}\right)\right\} /\left(\delta\left(x_{2 n}, S x_{2 n}\right)\right. \\
& \left.+\delta\left(x_{2 n-1}, T x_{2 n-1}\right)+1\right) \\
\leq & \max \left\{d_{2 n-1}, d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n}\right)\right. \\
& \left.+d\left(x_{2 n-1}, x_{2 n+1}\right)\right\} /\left(d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n-1}, x_{2 n}\right)+1\right) \\
\leq & \frac{\max \left\{d_{2 n-1}, d_{2 n}+d_{2 n-1}, d_{2 n}+d_{2 n-1}\right\}}{d_{2 n}+d_{2 n-1}+1}:=\beta_{2 n} \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
m\left(x_{2 n}, x_{2 n-1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), D\left(x_{2 n}, S x_{2 n}\right), D\left(x_{2 n-1}, T x_{2 n-1}\right),\right. \\
& \left.\frac{D\left(x_{2 n}, T x_{2 n-1}\right)+D\left(x_{2 n-1}, S x_{2 n}\right)}{2}\right\} \\
= & \max \left\{d_{2 n-1}, d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right),\right. \\
& \left.\frac{d\left(x_{2 n}, x_{2 n}\right)+d\left(x_{2 n-1}, x_{2 n+1}\right)}{2}\right\} \\
= & \max \left\{d_{2 n-1}, d_{2 n}\right\} . \tag{3.8}
\end{align*}
$$

Substituting (3.7), (3.8) into (3.5), we have

$$
\begin{aligned}
\varphi\left(d_{2 n}\right) & =\varphi\left(d\left(x_{2 n}, x_{2 n+1}\right)\right) \leq \varphi\left(\frac{1}{h_{2 n}} H\left(S x_{2 n}, T x_{2 n-1}\right)\right)=\frac{1}{h_{2 n}} \varphi\left(H\left(S x_{2 n}, T x_{2 n-1}\right)\right) \\
& \leq \frac{1}{h_{2 n}} \beta_{2 n} \cdot \varphi\left(\max \left\{d_{2 n-1}, d_{2 n}\right\}\right) \leq \sqrt{\beta_{2 n}} \cdot \varphi\left(d_{2 n-1}\right) .
\end{aligned}
$$

A similar computation verifies that

$$
\varphi\left(d_{2 n+1}\right) \leq \sqrt{\beta_{2 n+1}} \cdot \varphi\left(d_{2 n}\right) .
$$

From the above inequalities, we obtain

$$
\begin{equation*}
\varphi\left(d_{n+1}\right) \leq \sqrt{\beta_{n+1}} \cdot \varphi\left(d_{n}\right) \text { for } n \in \mathbb{N} \text {. } \tag{3.9}
\end{equation*}
$$

Therefore, $\left\{d_{n}\right\}$ is a monotone decreasing positive real sequence. Taking the limit of both sides of (3.9) an $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} d_{n}=0$.

For any integers $m, n>0$, using (3.9),

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{k=n}^{m-1} d_{k} \leq \sum_{k=n}^{m-1}\left(\beta_{k-1} \cdots \beta_{0}\right) d_{0}=d_{0} \sum_{k=n}^{m-1} a_{k},
$$

where $a_{k}=\beta_{k-1} \cdots \beta_{0}$. Since $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \beta_{k}=0, \sum a_{n}$ converges, which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence, hence it converges to some point $p \in X$,
since X is complete. Using (3.1)-(3.3), we have

$$
\begin{aligned}
& N\left(x_{2 n}, p\right) \leq \max \left\{d\left(x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right)+D(p, T p), D\left(x_{2 n}, T p\right)\right. \\
&\left.+d\left(p, x_{2 n+1}\right)\right\} /\left(\delta\left(x_{2 n}, x_{2 n+1}\right)+\delta(p, T p)+1\right), \\
& m\left(x_{2 n}, p\right) \leq \max \left\{d\left(x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right), D(p, T p), \frac{D\left(x_{2 n}, T p\right)+d\left(p, x_{2 n+1}\right)}{2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi\left(d\left(x_{2 n+1}, T p\right)\right) & =\varphi\left(H\left(S x_{2 n}, T p\right)\right) \\
& \leq N\left(x_{2 n}, p\right) \cdot \varphi\left(m\left(x_{2 n}, p\right)\right)-\psi\left(m\left(x_{2 n}, p\right)\right)
\end{aligned}
$$

Taking the limit of both sides of the above inequalty as $n \rightarrow \infty$

$$
\varphi(D(p, T p)) \leq \frac{D(p, T p)}{D(p, T p)+1} \cdot \varphi(D(p, T p))
$$

which implies that p is a fixed point of T. From Lemma 3.2, p is a fixed point of S.
(b) For $x \in X$, let $x_{1} \in T x$. Define $x_{2 n} \in S x_{2 n-1}$ and $x_{2 n+1} \in T x_{2 n}$ for $n \in \mathbb{N}$. Then $\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to common fixed point of S and T.
(c) Suppose that p and q are distinct common fixed points of S and T.

$$
\begin{equation*}
d(p, q) \leq D(p, S p)+D(S p, T q)+D(T q, q) \leq H(S p, T q) . \tag{3.10}
\end{equation*}
$$

From (3.2) and (3.3), we obtain

$$
N(p, q)=\frac{\max \{d(p, q), D(p, S p)+D(q, T q), D(p, T q)+D(q, S p)\}}{\delta(p, S p)+\delta(q, T q)+1}=2 d(p, q)
$$

and

$$
m(p, q)=\max \left\{d(p, q), D(p, S p), D(q, T q), \frac{D(p, T q)+D(q, S p)}{2}\right\}=d(p, q)
$$

Thus, (2.1) becomes

$$
\begin{aligned}
\varphi(d(p, q)) & =\varphi(d(S p, T q)) \\
& \leq N(p, q) \cdot \varphi(m(p, q))-\psi(m(p, q)) \leq 2 d(p, q) \varphi(d(p, q)),
\end{aligned}
$$

which implies that $(1-2 d(p, q)) \varphi(d(p, q)) \leq 0$. Hence, $d(p, q) \geq \frac{1}{2}$.
If we put $\varphi(t)=t$ and $\psi(t)=0$, then Theorem 3.3 can be modified as follows, which is the common fixed point theorem in [6].

Theorem 3.4. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

$$
H(S x, T y) \leq N(x, y) m(x, y) \text { for all } x, y \in X,
$$

where

$$
N(x, y)=\frac{\max \{d(x, y), D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)\}}{\delta(x, S x)+\delta(y, T y)+1}
$$

and

$$
m(x, y)=\max \left\{d(x, y), D(x, S x), D(y, T y), \frac{D(x, T y)+D(y, T x)}{2}\right\} .
$$

Then
(a) S and T have at least one common fixed point $p \in X$.
(b) For even natural number n, $\left\{(S T)^{\frac{n}{2}} x\right\}$ and $\left\{T(S T)^{\frac{n}{2}} x\right\}$ converge to a common fixed point for $x \in X$.
(c) If p and q are distinct common fixed ponits of S and T, then $d(p, q) \geq \frac{1}{2}$.

In Theorem 3.3, if φ is the identity function, ψ the zero function and $S=T$, then the main theorem of Khojasteh et. al. [3] for multi-valued mappings can be obtained as a corollary of Theorem 3.3.

Theorem 3.5. Let (X, d) be a complete metric space, T selfmaps of X satisfying

$$
H(T x, T y) \leq \frac{D(x, T y)+D(y, T x)}{\delta(x, T x)+\delta(y, T y)+1} d(x, y) \text { for all } x, y \in X
$$

Then T has a fixed point $p \in X$.

References

1. J. Caristi: Fixed point theorems for mappings satisfying inwardness conditions. Tran. Amer. Math. Soc. 215 (1976), 241-251. https://doi.org/10.1090/s0002-9947-1976-0394329-4
2. J. Caristi \& W.A. Kirk: Geometric fixed point theory and inwardness conditions. The Geometry of Metric and Linear Spaces. Lecture Notes in Mathematics, vol 490. Springer, Berlin, Heidelberg, 1975.
3. F. Khojasteh, M. Abbas \& S. Costache: Two new types of fixed point theorems in complete metric spaces. Abst. Appl. Anal. Volume 2014, Article ID 325840. https://doi. org/10.1155/2014/325840
4. S. Leader: Equivalent Cauchy sequences and contractive fixed points in metric spaces. Studia Mathematica 76 (1983), no. 1, 63-67. https://doi.org/10.4064/sm-76-1-63-67
5. S.B. Nadler: Multi-valued contraction mappings. Pacific J. Math. 30 (1969), 457-488. https://doi.org/10.2140/pjm.1969.30.475
6. B.E. Rhoades: Two new fixed point theorems. Gen. Math. Notes 27 (2015), no. 2, 123-132.
7. P.V. Subrahmanyam: Remarks on some fixed point theorems related to Banach contraction principle. J. Math. Physical Science 8 (1974), 445-457.
8. T. Suzuki: A new type of fixed point theorem in metric space. Nonlinear Anal. 71 (2009), 5313-5317. https://doi.org/10.1016/j.na.2009.04.017
${ }^{a}$ Professor: Department of Mathematics, Kyungsung University, Busan 48434, Republic of Korea
Email address: jiny0610@hotmail.com
${ }^{\text {b }}$ Professor: Department of Mathematics, Dongeui University, Busan 47340, Republic of Korea
Email address: mee@deu.ac.kr

[^0]: Received by the editors June, 2023. Accepted October 9, 2023.
 2020 Mathematics Subject Classification. 47H10, 54C60.
 Key words and phrases. common fixed points, complete metric spaces.

 * Corresponding author.

