TWO SUBRAHMANYAM TYPE OF COMMON FIXED POINT THEOREMS IN COMPLETE METRIC SPACES

SEUNG HYUN KIM^a AND MEE KWANG KANG^{b,*}

ABSTRACT. In this paper, we introduce new types of weakly Picard operators being available to a much wider class of maps, and prove common fixed point theorems of Subrahmanyam type for two these weakly Picard operators in the collection of singlevalued and multi-valued mappings in complete metric spaces. Our results extend and generalize the corresponding fixed point theorems in the literature [3, 6].

1. INTRODUCTION

Suzuki [8] categorized fixed point theorems on metric spaces (X, d) into the following four types;

- (1) Leader type [4] : T has a unique fixed point and $\{T^n x\}$ converges to the fixed point for all $x \in X$.
- (2) Unnamed type : T has a unique fixed point and $\{T^n x\}$ does not necessarily converge to the fixed point for all $x \in X$.
- (3) Subrahmanyam type [7] : T may have more than one fixed point and $\{T^n x\}$ converges to a fixed point for all $x \in X$.
- (4) Caristi type [1, 2]: T may have more than one fixed point and $\{T^n x\}$ does not necessarily converge to a fixed point for all $x \in X$.

Khojasteh et. al. [3] introduced two types of fixed point theorems in the collection of multi-valued and single valued mappings and proved them, which belongs to (3). One year later, Rhoades [6] extended the results of Khojasteh et. al. [3] to two maps and to a much wider class of maps.

© 2024 Korean Soc. Math. Educ.

Received by the editors June, 2023. Accepted October 9, 2023.

²⁰²⁰ Mathematics Subject Classification. 47H10, 54C60.

Key words and phrases. common fixed points, complete metric spaces.

^{*}Corresponding author.

Motivated by the previous works, in this paper, we establish two Subrahmanyam types of common fixed point theorems in the collection of single-valued and multivalued mappings in metric spaces, which generalize the corresponding results of Rhoades [6].

2. Common Fixed Point Theorem for Single-Valued Mappings

First of all, we prove the following lemma to obtain a common fixed point theorem.

Lemma 2.1. Let (X, d) be a complete metric space and let S and T be self-mappings on X satisfying, for all $x, y \in X$,

(2.1)
$$\varphi(d(Sx,Ty)) \le N(x,y) \cdot \varphi(m(x,y)) - \psi(m(x,y)),$$

where

(2.2)
$$N(x,y) = \frac{\max\{d(x,y), d(x,Sx) + d(y,Ty), d(x,Ty) + d(y,Sx)\}}{d(x,Sx) + d(y,Ty) + 1}$$

(2.3)
$$m(x,y) = \max\{d(x,y), d(x,Sx), d(y,Ty), \frac{d(x,Ty) + d(y,Sx)}{2}\},\$$

 $\varphi: [0,\infty) \to [0,\infty)$ a non-decreasing continuous function and $\psi: [0,\infty) \to [0,\infty)$ a continuous function with $\psi(t) = 0$ if and only if t = 0. Then each fixed point of S is a fixed point of T, and vice versa.

Proof. Let p is a fixed point of S and suppose that p is not a fixed point of T. From (2.2), we have

$$N(p,p) = \frac{\max\{d(p,p), d(p,Sp) + d(p,Tp), d(p,Tp) + d(p,Sp)\}}{d(p,Sp) + d(p,Tp) + 1} = \frac{d(p,Tp)}{d(p,Tp) + 1} < 1$$

and, from (2.3),

$$m(p,p) = \max\{d(p,p), d(p,Sp), d(p,Tp), \frac{d(p,Tp) + d(p,Sp)}{2}\} = d(p,Tp).$$

Substituting the above inequality and equality into (2.1), we get

$$\begin{aligned} \varphi(d(p,Tp)) &= \varphi(d(Sp,Tp)) &\leq N(p,p) \cdot \varphi(m(p,p)) - \psi(m(p,p)) \\ &< \varphi(d(p,Tp)) - \psi(d(p,Tp)), \end{aligned}$$

which implies that $\psi(d(p, Tp)) < 0$. This contradicts the fact that the range of ψ is $[0, \infty)$. Therefore, p is a fixed point of T.

Similarly, it can be shown that, if q is a fixed point of T then it is also a fixed point of S.

Theorem 2.2. Assume that S and T satisfy the hypotheses of Lemma 2.1. Then (a) S and T have at least one common fixed point $p \in X$.

(b) For even natural number n, $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to a common fixed point for $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \ge \frac{1}{2}$.

Proof. (a) Let x_0 be an arbitrary element of X and define $\{x_n\}$ by

(2.4)
$$x_{2n+1} = Sx_{2n}, \ x_{2n+2} = Tx_{2n+1} \text{ for } n \in \mathbb{N} \cup \{0\}.$$

Suppose that there exists $n \in \mathbb{N} \cup \{0\}$ such that $x_{2n+1} = x_{2n+2}$. Then, from (2.4), $x_{2n+1} = x_{2n+2} = Tx_{2n+1}$, thus x_{2n+1} is a fixed point of T. By Lemma 2.1, x_{2n+1} is a fixed point of S and so it is a common fixed point of S and T.

Similarly, if there exists $n \in \mathbb{N} \cup \{0\}$ such that $x_{2n} = x_{2n+1}$, then x_{2n} is a common fixed point of S and T.

Therefore, we assume that

(2.5)
$$x_n \neq x_{n+1} \text{ for } n \in \mathbb{N} \cup \{0\}.$$

From (2.1) and (2.4), we have

$$\varphi(d(x_{2n+1}, x_{2n+2})) = \varphi(d(Sx_{2n}, Tx_{2n+1}))$$

$$(2.6) \leq N(x_{2n}, x_{2n+1}) \cdot \varphi(m(x_{2n}, x_{2n+1})) - \psi(m(x_{2n}, x_{2n+1})).$$

Defining $d_n := d(x_n, x_{n+1})$, from (2.2), (2.4) and the metric triangle property,

$$N(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}) + d(x_{2n+1}, Tx_{2n+1}), d(x_{2n}, Tx_{2n+1}) + d(x_{2n+1}, Sx_{2n})\}/(d(x_{2n}, Sx_{2n}) + d(x_{2n+1}, Tx_{2n+1}) + 1)$$

$$= \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}), d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+2}), d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+2}) + 1)$$

$$= \frac{\max\{d_{2n}, d_{2n} + d_{2n+1}, d_{2n} + d_{2n+1}\}}{d_{2n} + d_{2n+1} + 1}$$

$$(2.7) = \frac{d_{2n} + d_{2n+1}}{d_{2n} + d_{2n+1} + 1} := \beta_{2n},$$

and

(2.8)
$$m(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}), d(x_{2n+1}, Tx_{2n+1}), \\ \frac{d(x_{2n}, Tx_{2n+1}) + d(x_{2n+1}, Sx_{2n})}{2}\}$$

SEUNG HYUN KIM & MEE KWANG KANG

$$= \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), \\ \frac{d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+1})}{2}\}$$

=
$$\max\{d_{2n}, d_{2n+1}\}.$$

Substituting (2.7) and (2.8) into (2.6), since $d_{2n} \neq 0$, we obtain the following inequality

(2.9)

$$\begin{aligned}
\varphi(d_{2n+1}) &\leq \beta_{2n} \cdot \varphi(\max\{d_{2n}, d_{2n+1}\}) - \psi(\max\{d_{2n}, d_{2n+1}\}) \\
&< \beta_{2n} \cdot \varphi(\max\{d_{2n}, d_{2n+1}\}) \\
&= \beta_{2n} \cdot \varphi(d_{2n}).
\end{aligned}$$

If $\max\{d_{2n}, d_{2n+1}\} = d_{2n+1}$ in the last formula, then the above inequality means $(1 - \beta_{2n})\varphi(d_{2n+1}) < 0$. Since $0 < \beta_{2n} < 1$, $\varphi(d_{2n+1}) < 0$, which contradicts the range of φ .

Applying the same method to $\varphi(d_{2n})$ instead of $\varphi(d_{2n+1})$ in (2.6), we have

(2.10)
$$\varphi(d_{2n}) < \beta_{2n-1} \cdot \varphi(d_{2n-1}).$$

Therefore, from (2.9) and (2.10), we have

$$\varphi(d_n) < \beta_{n-1} \cdot \varphi(d_{n-1}) < \varphi(d_{n-1}).$$

Since φ is non-decreasing,

$$(2.11) d_n < d_{n-1} ext{ for each } n \in \mathbb{N}.$$

On the other hand, for $n \in \mathbb{N}$, $\beta_n < \beta_{n-1}$. In fact, the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{x+1}$ is increasing and $d_n + d_{n+1} < d_{n-1} + d_n$ so that we have, from (2.11),

$$\frac{d_n+d_{n+1}}{d_n+d_{n+1}+1} < \frac{d_{n-1}+d_n}{d_{n-1}+d_n+1},$$

and thus

$$(2.12) \qquad \qquad \beta_n < \beta_{n-1} \text{ for } n \in \mathbb{N}.$$

From (2.11) and (2.12), we have

$$(2.13) d_n < \beta_1 \cdot d_{n-1} < \beta_1^n \cdot d_0.$$

24

For any positive integers m, n with m > n, it follows from (2.13) that

$$d(x_n, x_m) \leq \sum_{i=n}^{m-1} d_i < \sum_{i=n}^{m-1} \beta_1^i \cdot d_0$$

= $\beta_1^n \cdot d_0 \sum_{j=0}^{m-n-1} \beta_1^j < \frac{\beta_1^n}{1-\beta_1} d_0$

Therefore $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $p \in X$ such that $\lim_{n \to \infty} x_n = p$. Using (2.1)-(2.3), we have

$$N(x_{2n}, p) \leq \max\{d(x_{2n}, p), d(x_{2n}, x_{2n+1}) + d(p, Tp), d(x_{2n}, Tp) + d(p, x_{2n+1})\}/(d(x_{2n}, x_{2n+1}) + d(p, Tp) + 1),$$

 $m(x_{2n}, p) \le \max\{d(x_{2n}, p), d(x_{2n}, x_{2n+1}), d(p, Tp), \frac{d(x_{2n}, Tp) + d(p, x_{2n+1})}{2}\}$

and

$$\varphi(d(x_{2n+1},Tp)) = \varphi(d(Sx_{2n},Tp))$$

$$\leq N(x_{2n},p) \cdot \varphi(m(x_{2n},p)) - \psi(m(x_{2n},p)).$$

Taking the limit of both sides of the above inequality as $n \to \infty$

$$\varphi(d(p,Tp)) \le \frac{d(p,Tp)}{d(p,Tp)+1} \cdot \varphi(d(p,Tp)),$$

which implies that p = Tp. From Lemma 2.1, p is a fixed point of S.

(b) For $x \in X$, let $x_1 = Tx$. Define $x_{2n} = Sx_{2n-1}$ and $x_{2n+1} = Tx_{2n}$ for $n \in \mathbb{N}$. Then $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to common fixed point of S and T.

(c) Suppose that p and q are distinct common fixed points of S and T. From (2.2) and (2.3), we obtain

$$N(p,q) = \frac{\max\{d(p,q), d(p,Sp) + d(q,Tq), d(p,Tq) + d(q,Sp)\}}{d(p,Sp) + d(q,Tq) + 1} = 2d(p,q)$$

and

$$m(p,q) = \max\{d(p,q), d(p,Sp), d(q,Tq), \frac{d(p,Tq) + d(q,Sp)}{2}\} = d(p,q)$$

Thus, (2.1) becomes

$$\begin{split} \varphi(d(p,q)) &= \varphi(d(Sp,Tq)) \\ &\leq N(p,q) \cdot \varphi(m(p,q)) - \psi(m(p,q)) \leq 2d(p,q)\varphi(d(p,q)), \end{split}$$

which implies that $(1 - 2d(p,q))\varphi(d(p,q)) \leq 0$. Hence, $d(p,q) \geq \frac{1}{2}$.

If we put $\varphi(t) = t$ and $\psi(t) = 0$, then Theorem 2.2 can be modified as follows, which is the common fixed point theorem in [6].

Theorem 2.3. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

$$d(Sx, Ty) \leq N(x, y)m(x, y)$$
 for all $x, y \in X$,

where

$$N(x,y) = \frac{\max\{d(x,y), d(x,Sx) + d(y,Ty), d(x,Ty) + d(y,Sx)\}}{d(x,Sx) + d(y,Ty) + 1}$$

and

$$m(x,y) = \max\{d(x,y), d(x,Sx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2}\}.$$

Then

(a) S and T have at least one common fixed point $p \in X$.

(b) For even natural number n, $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to a common fixed point for $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \geq \frac{1}{2}$.

Theorem 2.4. [3] Let (X, d) be a complete metric space, T selfmaps of X satisfying

(2.14)
$$d(Tx,Ty) \le \frac{d(x,Ty) + d(y,Tx)}{d(x,Tx) + d(y,Ty) + 1} d(x,y)$$
 for all $x, y \in X$.

Then

(a) T has at least one fixed point $p \in X$.

(b) $\{T^n x\}$ converges to a fixed point for $x \in X$.

(c) If p and q are distinct fixed points of T, then $d(p,q) \ge \frac{1}{2}$.

Proof. If we put $\varphi = I$, $\psi(t) = 0$ and S = T in (2.1), then the inequality (2.14) satisfies the hypotheses of Theorem 2.2 and so we obtain Theorem 2.4.

3. Common Fixed Point Theorem for Multi-valued Mappings

We shall need the following notations for a common fixed point theorem on multivalued mappings;

> $CB(X) = \{A|A \text{ is a nonempty closed and bounded subset of } X\},$ $D(a,B) = \inf\{d(a,b)|b \in B\} \text{ for } a \in X,$ $\delta(a,B) = \sup\{d(a,b)|b \in B\} \text{ for } a \in X,$ $H(A,B) = \max\{\sup_{x \in A} D(x,B), \sup_{y \in B} D(y,A)\}.$

26

Lemma 3.1 ([5]). Let $A, B \in CB(X)$, and let $x \in A$. Then, for each $\alpha > 0$, there exists $y \in B$ such that

$$d(x,y) \le H(A,B) + \alpha.$$

Lemma 3.2. Let (X, d) be a complete metric space and let S and T be multi-valued mappings from X into CB(X) satisfying, for all $x, y \in X$,

(3.1)
$$\varphi(H(Sx,Ty)) \le N(x,y) \cdot \varphi(m(x,y)) - \psi(m(x,y)),$$

where

(3.2)
$$N(x,y) = \frac{\max\{d(x,y), D(x,Sx) + D(y,Ty), D(x,Ty) + D(y,Sx)\}}{\delta(x,Sx) + \delta(y,Ty) + 1},$$

(3.3)
$$m(x,y) = \max\{d(x,y), D(x,Sx), D(y,Ty), \frac{D(x,Ty) + D(y,Sx)}{2}\}$$

 $\varphi : [0,\infty) \to [0,\infty)$ a non-decreasing continuous function with $\varphi(ct) = c\varphi(t)$ and $\psi : [0,\infty) \to [0,\infty)$ a continuous function with $\psi(t) = 0$ if and only if t = 0. Then each fixed point of S is a fixed point of T, and vice versa.

Proof. Suppose that p is a fixed point of S. From (3.1) and the definition of H, $\varphi(D(p,Tp)) = \varphi(H(p,Tp)) = \varphi(H(Sp,Tp)) \leq N(p,p) \cdot \varphi(m(p,p)) - \psi(m(p,p)).$ From (3.2) and (3.3), we have

$$\begin{split} N(p,p) &= \frac{\max\{d(p,p), D(p,Sp) + D(p,Tp), D(p,Tp) + D(p,Sp)\}}{\delta(p,Sp) + \delta(p,Tp) + 1} = \frac{D(p,Tp)}{\delta(p,Tp) + 1} \\ &\leq \frac{D(p,Tp)}{D(p,Tp) + 1} := \beta < 1 \end{split}$$

and

$$m(p,p) = \max\{d(p,p), D(p,Sp), D(p,Tp), \frac{D(p,Tp) + D(p,Sp)}{2}\} = D(p,Tp).$$

Therefore

$$\begin{aligned} \varphi(D(p,Tp)) &\leq \beta \cdot \varphi(D(p,Tp)) - \psi(D(p,Tp)) \\ &\leq \varphi(D(p,Tp)) - \psi(D(p,Tp)), \end{aligned}$$

which implies that $\psi(D(p,Tp)) \leq 0$. This contradicts the fact that the range of ψ is $[0,\infty)$. Therefore, p is a fixed point of T.

Similarly, it can be shown that, if q is a fixed point of T then it is a fixed point of S.

Theorem 3.3. Assume that S and T satisfy the hypotheses of Lemma 3.2. Then (a) S and T have at least one common fixed point $p \in X$.

(b) For even natural number n, $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to a common fixed point for $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \geq \frac{1}{2}$.

Proof. (a) Let $x_0 \in X$ and $x_1 \in Sx_0$. Define h_n by

(3.4)
$$h_n = \sqrt{\beta_n} = \sqrt{\frac{d_{n-1} + d_n}{d_{n-1} + d_n + 1}}.$$

From Lemma 3.1, for $0 < h_1 < 1$, i.e. $\frac{1}{h_1} - 1 > 0$, we can take $x_2 \in Tx_1$ such that

$$d(x_1, x_2) \le H(Sx_0, Tx_1) + (\frac{1}{h_1} - 1)H(Sx_0, Tx_1) = \frac{1}{h_1}H(Sx_0, Tx_1).$$

In a similar manner, for $0 < h_2 < 1$, we can take $x_3 \in Sx_2$ such that

$$d(x_2, x_3) = d(x_3, x_2) \le H(Sx_2, Tx_1) + (\frac{1}{h_2} - 1)H(Sx_2, Tx_1) = \frac{1}{h_2}H(Sx_2, Tx_1).$$

Continuing this process, for $0 < h_{2n} < 1$, we can take $x_{2n+1} \in Sx_{2n}$ such that

(3.5)
$$d(x_{2n}, x_{2n+1}) \le \frac{1}{h_{2n}} H(Sx_{2n}, Tx_{2n-1})$$

and for $0 < h_{2n+1} < 1$, we can take $x_{2n+2} \in Tx_{2n+1}$ such that

(3.6)
$$d(x_{2n+1}, x_{2n+2}) \le \frac{1}{h_{2n+1}} H(Sx_{2n}, Tx_{2n+1}).$$

If there exists $n \in \mathbb{N}$ such that $H(Sx_{2n}, Tx_{2n-1}) = 0$, then $Sx_{2n} = Tx_{2n-1}$, which implies that $x_{2n} \in Sx_{2n}$, since $x_{2n} \in Tx_{2n-1}$, and x_{2n} is a fixed point of S. By Lemma 3.2, x_{2n} is a fixed point of T. Similarly, if there exists $n \in \mathbb{N}$ such that $H(Sx_{2n}, Tx_{2n+1}) = 0$, then x_{2n+1} is a common fixed point of S and T. Therefore, we assume that $H(Sx_{2n}, Tx_{2n-1}) \neq 0$ and $H(Sx_{2n}, Tx_{2n+1}) \neq 0$.

On the other hand, if there exists $n \in \mathbb{N}$ such that $x_{2n} = x_{2n+1}$, then, since $x_{2n+1} \in Sx_{2n}, x_{2n}$ is a fixed point of S. By Lemma 3.2, x_{2n} is a fixed point of T. Similarly, if there exists $n \in \mathbb{N}$ such that $x_{2n+1} = x_{2n+2}$, then x_{2n+1} is a common fixed point of S and T. Therefore, we also assume that $x_n \neq x_{n+1}$ for $n \in \mathbb{N}$. From (3.2), (3.3) and (3.4), we get

$$N(x_{2n}, x_{2n-1}) = \max\{d(x_{2n}, x_{2n-1}), D(x_{2n}, Sx_{2n}) + D(x_{2n-1}, Tx_{2n-1}), \\ D(x_{2n}, Tx_{2n-1}) + D(x_{2n-1}, Sx_{2n})\}/(\delta(x_{2n}, Sx_{2n}) \\ + \delta(x_{2n-1}, Tx_{2n-1}) + 1) \\ \leq \max\{d_{2n-1}, d(x_{2n}, x_{2n+1}) + d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n}) \\ + d(x_{2n-1}, x_{2n+1})\}/(d(x_{2n}, x_{2n+1}) + d(x_{2n-1}, x_{2n}) + 1) \\ \leq \frac{\max\{d_{2n-1}, d_{2n} + d_{2n-1}, d_{2n} + d_{2n-1}\}}{d_{2n} + d_{2n-1} + 1} := \beta_{2n}$$

and

$$m(x_{2n}, x_{2n-1}) = \max\{d(x_{2n}, x_{2n-1}), D(x_{2n}, Sx_{2n}), D(x_{2n-1}, Tx_{2n-1}), \\ \frac{D(x_{2n}, Tx_{2n-1}) + D(x_{2n-1}, Sx_{2n})}{2}\}$$

$$= \max\{d_{2n-1}, d(x_{2n}, x_{2n+1}), d(x_{2n-1}, x_{2n}), \\ \frac{d(x_{2n}, x_{2n}) + d(x_{2n-1}, x_{2n+1})}{2}\}$$

$$(3.8) = \max\{d_{2n-1}, d_{2n}\}.$$

Substituting (3.7), (3.8) into (3.5), we have

$$\begin{aligned} \varphi(d_{2n}) &= \varphi(d(x_{2n}, x_{2n+1})) \le \varphi(\frac{1}{h_{2n}} H(Sx_{2n}, Tx_{2n-1})) = \frac{1}{h_{2n}} \varphi(H(Sx_{2n}, Tx_{2n-1})) \\ &\le \frac{1}{h_{2n}} \beta_{2n} \cdot \varphi(max\{d_{2n-1}, d_{2n}\}) \le \sqrt{\beta_{2n}} \cdot \varphi(d_{2n-1}). \end{aligned}$$

A similar computation verifies that

$$\varphi(d_{2n+1}) \le \sqrt{\beta_{2n+1}} \cdot \varphi(d_{2n}).$$

From the above inequalities, we obtain

(3.9)
$$\varphi(d_{n+1}) \le \sqrt{\beta_{n+1}} \cdot \varphi(d_n) \text{ for } n \in \mathbb{N}.$$

Therefore, $\{d_n\}$ is a monotone decreasing positive real sequence. Taking the limit of both sides of (3.9) an $n \to \infty$, we have $\lim_{n \to \infty} d_n = 0$.

For any integers m, n > 0, using (3.9),

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d_k \le \sum_{k=n}^{m-1} (\beta_{k-1} \cdots \beta_0) d_0 = d_0 \sum_{k=n}^{m-1} a_k,$$

where $a_k = \beta_{k-1} \cdots \beta_0$. Since $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \beta_k = 0$, $\sum a_n$ converges, which implies that $\{x_n\}$ is a Cauchy sequence, hence it converges to some point $p \in X$,

since X is complete. Using (3.1)-(3.3), we have

$$N(x_{2n}, p) \leq \max\{d(x_{2n}, p), d(x_{2n}, x_{2n+1}) + D(p, Tp), D(x_{2n}, Tp) + d(p, x_{2n+1})\}/(\delta(x_{2n}, x_{2n+1}) + \delta(p, Tp) + 1),$$

 $m(x_{2n}, p) \le \max\{d(x_{2n}, p), d(x_{2n}, x_{2n+1}), D(p, Tp), \frac{D(x_{2n}, Tp) + d(p, x_{2n+1})}{2}\}$

and

$$\varphi(d(x_{2n+1}, Tp)) = \varphi(H(Sx_{2n}, Tp))$$

$$\leq N(x_{2n}, p) \cdot \varphi(m(x_{2n}, p)) - \psi(m(x_{2n}, p)).$$

Taking the limit of both sides of the above inequality as $n \to \infty$

$$\varphi(D(p,Tp)) \le \frac{D(p,Tp)}{D(p,Tp)+1} \cdot \varphi(D(p,Tp)),$$

which implies that p is a fixed point of T. From Lemma 3.2, p is a fixed point of S.

(b) For $x \in X$, let $x_1 \in Tx$. Define $x_{2n} \in Sx_{2n-1}$ and $x_{2n+1} \in Tx_{2n}$ for $n \in \mathbb{N}$. Then $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to common fixed point of S and T.

(c) Suppose that p and q are distinct common fixed points of S and T.

(3.10)
$$d(p,q) \le D(p,Sp) + D(Sp,Tq) + D(Tq,q) \le H(Sp,Tq)$$

From (3.2) and (3.3), we obtain

$$N(p,q) = \frac{\max\{d(p,q), D(p,Sp) + D(q,Tq), D(p,Tq) + D(q,Sp)\}}{\delta(p,Sp) + \delta(q,Tq) + 1} = 2d(p,q)$$

and

$$m(p,q) = \max\{d(p,q), D(p,Sp), D(q,Tq), \frac{D(p,Tq) + D(q,Sp)}{2}\} = d(p,q).$$

Thus, (2.1) becomes

$$\begin{aligned} \varphi(d(p,q)) &= \varphi(d(Sp,Tq)) \\ &\leq N(p,q) \cdot \varphi(m(p,q)) - \psi(m(p,q)) \leq 2d(p,q)\varphi(d(p,q)), \end{aligned}$$

which implies that $(1 - 2d(p,q))\varphi(d(p,q)) \leq 0$. Hence, $d(p,q) \geq \frac{1}{2}$.

If we put $\varphi(t) = t$ and $\psi(t) = 0$, then Theorem 3.3 can be modified as follows, which is the common fixed point theorem in [6].

Theorem 3.4. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying $H(Sx, Ty) \leq N(x, y)m(x, y)$ for all $x, y \in X$, where

$$N(x,y) = \frac{\max\{d(x,y), D(x,Sx) + D(y,Ty), D(x,Ty) + D(y,Sx)\}}{\delta(x,Sx) + \delta(y,Ty) + 1}$$

and

$$m(x,y) = \max\{d(x,y), D(x,Sx), D(y,Ty), \frac{D(x,Ty) + D(y,Tx)}{2}\}$$

Then

(a) S and T have at least one common fixed point $p \in X$.

(b) For even natural number n, $\{(ST)^{\frac{n}{2}}x\}$ and $\{T(ST)^{\frac{n}{2}}x\}$ converge to a common fixed point for $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \geq \frac{1}{2}$.

In Theorem 3.3, if φ is the identity function, ψ the zero function and S = T, then the main theorem of Khojasteh et. al. [3] for multi-valued mappings can be obtained as a corollary of Theorem 3.3.

Theorem 3.5. Let (X, d) be a complete metric space, T selfmaps of X satisfying

$$H(Tx,Ty) \le \frac{D(x,Ty) + D(y,Tx)}{\delta(x,Tx) + \delta(y,Ty) + 1} d(x,y) \text{ for all } x, y \in X.$$

Then T has a fixed point $p \in X$.

References

- J. Caristi: Fixed point theorems for mappings satisfying inwardness conditions. Tran. Amer. Math. Soc. 215 (1976), 241-251. https://doi.org/10.1090/s0002-9947-1976-0394329-4
- J. Caristi & W.A. Kirk: Geometric fixed point theory and inwardness conditions. The Geometry of Metric and Linear Spaces. Lecture Notes in Mathematics, vol 490. Springer, Berlin, Heidelberg, 1975.
- F. Khojasteh, M. Abbas & S. Costache: Two new types of fixed point theorems in complete metric spaces. Abst. Appl. Anal. Volume 2014, Article ID 325840. https://doi. org/10.1155/2014/325840
- S. Leader: Equivalent Cauchy sequences and contractive fixed points in metric spaces. Studia Mathematica 76 (1983), no. 1, 63-67. https://doi.org/10.4064/sm-76-1-63-67
- S.B. Nadler: Multi-valued contraction mappings. Pacific J. Math. 30 (1969), 457-488. https://doi.org/10.2140/pjm.1969.30.475
- B.E. Rhoades: Two new fixed point theorems. Gen. Math. Notes 27 (2015), no. 2, 123-132.

- P.V. Subrahmanyam: Remarks on some fixed point theorems related to Banach contraction principle. J. Math. Physical Science 8 (1974), 445-457.
- T. Suzuki: A new type of fixed point theorem in metric space. Nonlinear Anal. 71 (2009), 5313-5317. https://doi.org/10.1016/j.na.2009.04.017

^aProfessor: Department of Mathematics, Kyungsung University, Busan 48434, Repub-LIC of Korea *Email address*: jiny0610@hotmail.com

^bProfessor: Department of Mathematics, Dongeui University, Busan 47340, Republic of Korea

 $Email \ address: {\tt mee@deu.ac.kr}$

32