DOI QR코드

DOI QR Code

Evaluation of The Susceptibility of Several Insecticides to Honey Bee Pest, Vespa velutina nigrithorax (Hymenoptera: Vespidae)

꿀벌 해충 등검은말벌 방제를 위한 화학 살충제 이용 가능성 평가

  • Dongeui Hong (Department of Plant Medicals, Andong National University) ;
  • Chuleui Jung (Department of Plant Medicals, Andong National University)
  • 홍동의 (국립안동대학교 식물의학과) ;
  • 정철의 (국립안동대학교 식물의학과)
  • Received : 2023.08.28
  • Accepted : 2024.02.07
  • Published : 2024.03.01

Abstract

Vespa velutina nigrithorax du Buysson, 1905 is the invaded species in Korea since 2003. Since its importance as the honey bee pest, beekeepers use insecticides to kill the adult and immature hornets. However, its legality and effectiveness has not been confirmed. This study investigated the susceptibility of insecticides commonly used to control hornets by beekeepers in Korea. Eight insecticides were tested on adult worker and larvae by topical or oral treatment. Adults showed more than 70% mortalities from Clothianidin, Dinotefuran, and Carbosulfan treatment within 30 minutes. Bifenthrin and Cartap hydrochloride showed relatively low toxicity. The median lethal dose (LD50) for Clothianidin, Dinotefuran, and Carbosulfan was 0.29, 0.65, and 2.21 ㎍/bee, respectively. In larval feeding test where 5th instar larvae were fed 3 times every 24 hours, the mortality began after second treatments. After 3rd treatments (72 h), all insecticides showed mortality more than 70%. The LD50 values of Clothianidin, Dinotefuran, and Carbosulfan to V. velutina were approximately 10 to 100 times higher than those to honey bee, Apis mellifera. This study provides the basic information of those chemical toxicities to Vespa hornet and honey bees.

등검은말벌은 우리나라 뿐 아니라 유럽지역에 침입한 꿀벌의 중요한 포식해충이다. 양봉가들이 살충제를 활용하여 밀도 억제를 시도하고 있으나 아직까지 실현가능하고 과학적 방법과 적용 가능성이 정형화되지 않았다. 본 연구는 양봉가들이 주로 사용하는 살충제를 가지고, 등검은 말벌의 유충과 성충의 살충율과 반응 패턴을 조사하였다. Clothianidin, Dinotefuran, Carbosulfan은 처리 후 30분 내 70% 이상의 살충률을 보였으며, Bifenthrin, Cartap hydrochloride의 상대적으로 살충률이 낮았다. Clothianidin, Dinotefuran, Carbosulfan의 반수치사약량(LD50)은 각 0.29, 0.65, 2.21 ㎍/bee이었다. 5령 유충에 대한 24시간 간격으로 3회 연속 섭식 처리를 했을 때, 2일이후에 약효가 나타났고 72시간 후에는 모두 70% 이상 살충률을 보였다. 등검은말벌의 반수치사약량은 양봉꿀벌의 것보다 10-100배 더 높았다. 향후 이 살충제를 말벌 방제에 이용할 수 있을지 추가적 검토가 필요하다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공계대학중점연구소사업 (NRF-2018R1A6A1A03024862)과 농촌진흥청 기후변화 말벌(PJ014761022202) 지원을 받았습니다.

References

  1. Abrol, D.P., 1994. Ecology, behaviour and management of social wasp, Vespa velutina Smith (Hymenoptera: Vespidae), attacking honeybee colonies. J. Apic. Sci. 9, 5-10.
  2. Akhila, J.S., Shyamjith, D., Alwar, M.C., 2007. Acute toxicity studies and determination of median lethal dose. Curr. Sci. 93, 917-920.
  3. Aupinel, P., Fortini, D., Michaud, B., Medrzycki, P., Padovani, E., Przygoda, D., Tasei, J.N., 2010. Honey bee brood ring-test: method for testing pesticide toxicity on honeybee brood in laboratory conditions. Julius-Kuhn-Archiv. 423, 96.
  4. Badawy, M.E., Nasr, H.M., Rabea, E.I., 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177-193. https://doi.org/10.1007/s13592-014-0315-0
  5. Barandika, J.F., de la Hera, O., Fananas, R., Rivas, A., Arroyo, E., Alonso, R.M., Garcia-Perez, A.L., 2023. Efficacy of protein baits with fipronil to control Vespa velutina nigrithorax (Lepeletier, 1836) in Apiaries. Animals. 13, 2075.
  6. Carpenter, J.M., Kojima, J.I., 1997. Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). Nat. his. Bull. Ibaraki Univ. 1, 51-92.
  7. Chen, Y., Tong, X., 2004. Biological habit of Vespa bicolor. J. Jishou Univ. 25, 80.
  8. Choi, M.B., 2020. Ecology of Vespa velutina nigrithorax (Hymenoptera: Vespidae), an invasive alien species in Korea: its behavioral analysis for aggressiveness, foraging and defense. Doctoral dissertation. Kyungbuk National University.
  9. Choi, M.B., Martin, S.J., Lee, J.W., 2012. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia Pac. Entomol. 15, 473-477. https://doi.org/10.1016/j.aspen.2011.11.004
  10. Crisp, D.J., Thorpe, W.H., 1948. The water-protecting properties of insect hairs. Faraday Discuss. 3, 210-220. https://doi.org/10.1039/df9480300210
  11. Decourtye, A., Devillers, J., 2010. Ecotoxicity of neonicotinoid insecticides to bees. Adv. Exp. Med. Biol. 683, 85-86. https://doi.org/10.1007/978-1-4419-6445-8_8
  12. Franklin, D.N., Brown, M.A., Datta, S., Cuthbertson, A.G., Budge, G.E., Keeling, M.J., 2017. Invasion dynamics of Asian hornet, Vespa velutina (Hymenoptera: Vespidae): a case study of a commune in south-west France. Appl. Entomol. Zool. 52, 221-229. https://doi.org/10.1007/s13355-016-0470-z
  13. Fukuto, T.R., 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health. Perspect. 87, 245-254. https://doi.org/10.1289/ehp.9087245
  14. Gross, M., 2013. EU ban puts spotlight on complex effects of neonicotinoids. Curr. Biol. 23, R462-R464. https://doi.org/10.1016/j.cub.2013.05.030
  15. Harbo, J.R., 1993. Worker-bee crowding affects brood production, honey production, and longevity of honey bees (Hymenoptera: Apidae). J. Eco. Entomol. 86, 1672-1678. https://doi.org/10.1093/jee/86.6.1672
  16. Ishay, J., Ikan, R., 1968. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298-303. https://doi.org/10.1016/0003-3472(68)90013-4
  17. Iwasa, T., Motoyama, N., Ambrose, J.T., Roe, R.M., 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop. Prot. 23, 371-378. https://doi.org/10.1016/j.cropro.2003.08.018
  18. Jang, Y.D., Lee, M.Y., Yoon, Y.N., 1994. Visiting pattern and control of Giant hornet, Vespa mandarinia (Hymenoptera : Vespoidea), in apiary. Korean J. Apiculture. 9, 178-180.
  19. Jeong, S.M., Lee, C.Y., Kim, D.W., Jung, C., 2016. Questionnaire study on the overwintering success and pest management of honeybee damage assessment of Vespa hornets in Korea. Korean J. Apic. 31, 201-210.
  20. Jeschke, P., Nauen, R., 2008. Neonicotinoids-from zero to hero in insecticide chemistry. Pest. Manag Sci. 64, 1084-1098. https://doi.org/10.1002/ps.1631
  21. Ji, S.G., 2022. Joint toxic effects between clothianidin and imidacloprid on Zebrafish Embryonic development. Doctoral Dissertation, Bpukyong National University.
  22. Jung, C., 2012a. Initial stage risk assessment of an invasive hornet, Vespa velutina nigrithorax Buysson (Hymenoptera: Vespidae) in Korea. Korean J. Apic. 27, 87-93.
  23. Jung, C.E., 2012b. Spatial expansion of an invasive hornet, Vespa velutina nigrithorax Buysson (Hymenoptera: Vespidae) in Korea. Korean J. Apic. 27, 95-104.
  24. Jung, C., Kang, M.S., Kim, D.W., 2007. Vespid Wasps (Hymenoptera) occurring around apiaries in Andong, Korea. Korean J. Apic. 22, 63-70.
  25. Kang, E.J., Lee, M.l., Lee, M.Y., Kim, H.G., Choi. Y.S., 2016. Attractive effect using honeybee extraction against Vespa velutina nigrithorax Buysson (Hymenoptera: Vespidae) queen. Korean J. Apic. 31, 195-199.
  26. Kennedy, P.J., Ford, S.M., Poidatz, J., Thiery, D., Osborne, J.L., 2018. Searching for nests of the invasive Asian hornet (Vespa velutina) using radio-telemetry. Commun. Biol, 1, 88.
  27. Kim, A.S., Kim, S.E., Kim, K.W., 2011. Analysis of honeybeekeeping management types and skills level in Korea. J. Anim. Sci. Technol. 53, 59-66. https://doi.org/10.5187/JAST.2011.53.1.59
  28. Kim, J.G., Choi, Y.S., Kang, E.J., Kim, S.B., Kim, K.M., Park, B.S., Kim, D.W., 2021. Evaluation of control efficiency against Vespa spp. (Family: Vespadae) using method of release after applying pesticide to the Vespa body. Korean J. Apic. 36, 105-110.
  29. Kim, J.K., Choi, M.B., Moon, T.Y., 2006. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Int. J. Entomol. Res. 36, 112-115. https://doi.org/10.1111/j.1748-5967.2006.00018.x
  30. Kim, M.J., Bak, S.B., Jung, C.E., 2023. Modeling abundance and risk impact of Vespa velutina nigrithorax (Hymenoptera: Vespidae) in Korea: application of a species abundance model. Sci. Rep. 13, 13616.
  31. Lee, S.M., Park, C.M., Goo, J.M., Lee, H.J., Wi, J.Y., Kang, C.H., 2013. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology 268, 265-273. https://doi.org/10.1148/radiol.13120949
  32. Lioy, S., Bianchi, E., Biglia, A., Bessone, M., Laurino, D., Porporato, M., 2021. Viability of thermal imaging in detecting nests of the invasive hornet Vespa velutina. Insect. Sci. 28, 271-277. https://doi.org/10.1111/1744-7917.12760
  33. Matsumoto, T., 2013. Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides. Bull. Insectology. 66, 1-9.
  34. Meikle, W.G., Rector, B.G., Mercadier, G., Holst, N., 2008. Withinday variation in continuous hive weight data as a measure of honey bee colony activity. Apidologie. 39, 694-707. https://doi.org/10.1051/apido:2008055
  35. Narahashi, T., 1971. Mode of action of pyrethroids. Bull. World Health. Org. 44, 337.
  36. Rodriguez-Flores, M.S., Seijo-Rodriguez, A., Escuredo, O., SeijoCoello, M.D.C., 2019. Spreading of Vespa velutina in northwestern Spain: influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest. Sci. 92, 557-565. https://doi.org/10.1007/s10340-018-1042-5
  37. Rojas-Nossa, S.V., Calvino-Cancela, M., 2020. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions. 22, 2609-2618. https://doi.org/10.1007/s10530-020-02275-9
  38. Rojas-Nossa, S.V., Dasilva-Martins, D., Mato, S., Bartolome, C., Maside, X., Garrido, J., 2022. Effectiveness of electric harps in reducing Vespa velutina predation pressure and consequences for honey bee colony development. Pest. Manag. Sci. 78, 5142-5149. https://doi.org/10.1002/ps.7132
  39. Rome, Q., Dambrine, L., Onate, C., Muller, F., Villemant, C., Garcia-Perez, A., Bruneau, E., 2013. Spread of the invasive hornet Vespa velutina Lepeletier, 1836, in Europe in 2012 (Hym., Vespidae). Bull. Soc. Entomol. France. 118, 21-22. https://doi.org/10.3406/bsef.2013.2580
  40. Rome, Q., Muller, F.J., Touret-Alby, A., Darrouzet, E., Perrard, A., Villemant, C., 2015. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J. Appl. Entomol. 139, 771-782. https://doi.org/10.1111/jen.12210
  41. Rome, Q., Perrard, A., Muller, F., Fontaine, C., Quiles, A., Zuccon, D., Villemant, C., 2021. Not just honeybees: predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. 57, 1-11 https://doi.org/10.1080/00379271.2020.1867005
  42. Ruiz, G.M., Carlton, J.T., 2003. Invasive species: vectors and management strategies. Island Press, Washington DC, p. 520.
  43. Sackmann, P., Rabinovich, M., Corley, J.C., 2001. Successful removal of German yellowjackets (Hymenoptera: Vespidae) by toxic baiting. J. Econ. Entomol. 94, 811-816. https://doi.org/10.1603/0022-0493-94.4.811
  44. Sattelle, D.B., Harrow, I.D., David, J.A., Pelhate, M., Callec, J.J., Gepner, J.I., Hall, L.M., 1985. Nereistoxin: actions on a CNS acetylcholine receptor/ion channel in the cockroach Periplaneta americana. Eur. J. Exp. Biol. 118, 37-52. https://doi.org/10.1242/jeb.118.1.37
  45. Sim, H.S., Lee, M.L., Choi, Y.S., Kim, H.Y., Hong, I.P., Woo, S.O., Byeon, K.H., Lee, M.Y., 2014. Pattern of emergence of Vespa velutina nigrithorax buysson (Hymenoptera: Vespidae) on spring in south part of Korea. Korean J. Apic. 29, 353-358.
  46. Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5-34. https://doi.org/10.1007/s11356-014-3470-y
  47. Stoner, K.A., Eitzer, B.D., 2013. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One. 11, e0159696.
  48. Tan, K., Radloff, S.E., Li, J.J., Hepburn, H.R., Yang, M.X., Zhang, L.J., Neumann, P., 2007. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera. Naturwissenschaften. 94, 469-472. https://doi.org/10.1007/s00114-006-0210-2
  49. Tarek, H., Hamiduzzaman, M.M., Morfin, N., Guzman-Novoa, E., 2018. Sub-lethal doses of neonicotinoid and carbamate insecticides reduce the lifespan and alter the expression of immune health and detoxification related genes of honey bees (Apis mellifera). Genet. Mol. Res. 17, gmr16039908.
  50. Turchi, L., Derijard, B., 2018. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553-562. https://doi.org/10.1111/jen.12515
  51. Ulziibayar, D., Begna, T., Ghosh, S., Jung, C.E., 2021. Acute and chronic toxicity of selected pesticides used in strawberry greenhouse to honeybee (Apis mellifera) larvae. Korean J. Apic. 36, 281-287.
  52. Ulziibayar, D., Jung, C.E., 2019. Comparison of acute toxicity of different groups of pesticides to honey bee workers (Apis mellifera L.). Korean J. Apic. 34, 305-313.
  53. Villemant, C., Streito, J.C., Haxaire, J., 2006. Premier bilan de l'invasion de Vespa velutina Lepeletier en France. Bull. Soc. Entomol. Fr. 111, 447-450.
  54. Zhang, Z., Muhammad, Y., Chen, Y., Shah, S.J., Peng, Y., Shao, S., Zhao, Z., 2021. Construction of ultra-stable and Z-scheme FeGraphdiyne/MIL-100 (Fe) photo-Fenton catalyst with C=C-FeIO interface for the highly enhanced catalytic degradation of Dinotefuran. Chem. Eng. J. 426, 131621.
  55. Son, S.H., Jo, AR. Kim, D.E., 2021. Current status of alert alien species management for the establishment of proactive management systems in Korea. J. Eco. Envir. 45, 26. https://doi.org/ 10.1186/s41610-021-00204-y