DOI QR코드

DOI QR Code

Resistance Monitoring and Analysis of Point Mutations to λ-cyhalothrin, Imidacloprid, and Flupyradifurone in Field-collected Populations of Myzus persicae (Hemiptera: Aphididae)

복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid, 그리고 flupyradifurone에 대한 저항성 모니터링과 점 돌연변이 분석

  • Ha Hyeon Moon (Department of Plant Medicine, Chungbuk National University) ;
  • Yuno Lee (Department of Plant Medicine, Chungbuk National University) ;
  • Dong-Hyun Kang (Department of Plant Medicine, Chungbuk National University) ;
  • Se Eun Kim (Department of Plant Medicine, Chungbuk National University) ;
  • Hyun Kyung Kim (Department of Plant Medicine, Chungbuk National University) ;
  • Hyun-Na Koo (Department of Plant Medicine, Chungbuk National University) ;
  • Gil-Hah Kim (Department of Plant Medicine, Chungbuk National University)
  • 문하현 (충북대학교 식물의학과) ;
  • 이유노 (충북대학교 식물의학과) ;
  • 강동현 (충북대학교 식물의학과) ;
  • 김세은 (충북대학교 식물의학과) ;
  • 김현경 (충북대학교 식물의학과) ;
  • 구현나 (충북대학교 식물의학과) ;
  • 김길하 (충북대학교 식물의학과)
  • Received : 2024.01.09
  • Accepted : 2024.02.15
  • Published : 2024.03.01

Abstract

The green peach aphid, Myzus persicae is a representative agricultural insect pest that is polyphagous and causes serious damage to tobacco, potatoes, peppers, cabbage, and peaches. In this study, we analyzed the level of development of insecticide resistance to λ-cyhalothrin, imidacloprid, and flupyradifurone and the point mutations (R81T, L1014F, M918L) in 12 field populations of M. persicae. In addition, the expression level of CYP6CY3, a cytochrome P450 gene, was analyzed through qRT-PCR. As a result, λ-cyhalothrin showed high resistance ratio (RR) of > 200 in all 12 populations. Imidacloprid and flupyradifurone showed high RR of >200 in YS, UR, HY, and WJ populations. The R81T was detected in approximately 50%, L1014F in approximately 33.3%, and M918L in 100% of the 12 populations. Additionally, the expression level of subunit CYP6CY3 was highest in imidacloprid-resistant population (YS). These results suggest that M918L point mutation can be used as λ-cyhalothrin-resistance molecular diagnostic and R81T point mutation and the high expression of CYP6CY3 can be used as imidacloprid-resistance molecular diagnostic markers.

복숭아혹진딧물(Myzus persicae)은 다식성으로 담배, 감자, 고추, 배추, 복숭아 등에 심각한 피해를 입히는 대표적인 농업해충이다. 본 연구에서는 국내 복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid 및 flupyradifurone에 대한 약제 저항성 발달 수준과 점 돌연변이(R81T, L1014F, M918L)의 발생 여부를 확인하였다. 또한, qRT-PCR을 통해 사이토크롬 P450 유전자인 CYP6CY3 발현량을 확인하였다. 그 결과, λ-cyhalothrin은 저항성비(Resistance Ratio, RR)가 12개 모든 지역이 > 200으로 높은 저항성을 보였다. Imidacloprid와 flupyradifurone은 YS, UR, HY, 그리고 WJ 개체군에서 > 200의 저항성비로 높은 저항성을 나타냈다. R81T는 12개 집단 중 약 50%, L1014F는 약 33.3%, M918L은 100%에서 발현하였다. 또한 qRT-PCR을 통해 imidacloprid 저항성 개체에서 subunit CYP6CY3의 발현량이 높게 나타난 것을 확인하였다. 이러한 결과는 M918L 점 돌연변이는 λ-cyhalothrin 저항성 진단마커로, R81T와 CYP6CY3의 높은 발현은 imidacloprid 저항성 진단마커로 활용이 가능하다는 것을 시사한다.

Keywords

Acknowledgement

이 성과는 농촌진흥청 지원을 받아 수행된 연구임(RS-2022-RD-010420).

References

  1. Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Andrews, M.C., Callaghan, A., Field, L.M., Williamson, M.S., Moores, G.D., 2004. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Mol. Biol. 13, 555-561. https://doi.org/10.1111/j.0962-1075.2004.00517.x
  3. Anthony, N., Unruh, T., Ganser, D., Ffrench-Constant, R., 1998. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol. Gen. Genet. 260, 165-175. https://doi.org/10.1007/s004380050882
  4. Bass, C., Carvalho, R.A., Oliphant, L., Puinean, A.M., Field, L.M., Nauen, R., Williamson, M.S., Moores, G., Gorman, K., 2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 20, 763-773. https://doi.org/10.1111/j.1365-2583.2011.01105.x
  5. Bass, C., Denholm, I., Williamson, M.S., Nauen, R., 2015. The global status of insect resistance to neonicotinoid insecticides. Pest Biochem. Physiol. 121, 78-87. https://doi.org/10.1016/j.pestbp.2015.04.004
  6. Bass, C., Zimmer, C.T., Riveron, J.M., Wilding, C.S., Wondji, C.S., Kaussmann, M., Field, L.M., Williamson, M.S., Nauen, R., 2013. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. U. S. A. 110, 19460-19465. https://doi.org/10.1073/pnas.1314122110
  7. Blackman, R.L., Eastop, V.F., 2000. Aphids on the world's crops: an identification and information guide, 2nd ed. John Wiley & Sons Ltd, Chichester.
  8. Blackman, R.L., Eastop, V.F., 2007. Taxonomic issues. in: van Emden, H.F., Harrington, R. (Eds.), Aphids as crop pests, 2nd ed. CAB International, Wallingford, 1-36.
  9. Cutler, P., Slater, R., Edmunds, A.J., Maienfisch, P., Hall, R.G., Earley, F.G., Pitterna, T., Pal, S., Paul, V.L., Goodchild, J., Blacker, M., Hagmann, L., Crossthwaite, A.J., 2013. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag. Sci. 69, 607-619. https://doi.org/10.1002/ps.3413
  10. Davies, T.G.E., Field, L.M., Usherwood, P.N.R., Williamson, M.S., 2007. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59, 151-162. https://doi.org/10.1080/15216540701352042
  11. Devonshire, A.L., Field, L.M., Foster, S.P., Moores, G.D., Williamson, M.S., Blackman, R.L., 1998. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 353, 1677-1684. https://doi.org/10.1098/rstb.1998.0318
  12. Devonshire, A.L., Moores, G.D., Chiang, C., 1983. The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae, in: Miyamoto, J., Kearney, P.C. (Eds.), Pesticide chemistry, human welfare and the environment: proceedings of the 5th international congress of pesticide chemistry. Pergamon Press, Oxford, pp. 191-196.
  13. Eleftherianos, I., Foster, S.P., Williamson, M.S., Denholm, I., 2008. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bull. Entomol. Res. 98, 183-191. https://doi.org/10.1017/S0007485307005524
  14. Eleftherianos, I.G., Foster, S.P., Williamson, M.S., Denholm, I., 2002. Behavioural consequences of pyrethroid resistance in the peach-potato aphid, Myzus persicae (Sulzer). The BCPC Conference: Pests and diseases, Volumes 1 and 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 18-21 November 2002, pp. 745-748.
  15. Ffrench-Constant, R.H., Anthony, N., Aronstein, K., Rocheleau, T., Stilwell, G., 2000. Cyclodiene insecticide resistance: from molecular to population genetics. Annu. Rev. of Entomol. 45, 449-466. https://doi.org/10.1146/annurev.ento.45.1.449
  16. Field, L.M., Devonshire, A.L., Forde, B.G., 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251, 309-312. https://doi.org/10.1042/bj2510309
  17. Fontaine, S., Caddoux, L., Brazier, C., Bertho, C., Bertolla, P., Micoud, A., Roy, L., 2011. Uncommon associations in target resistance among french populations of Myzus persicae from oilseed rape crops. Pest Manag. Sci. 67, 881-885. https://doi.org/10.1002/ps.2224
  18. Francis, F., Vanhaelen, N., Haubruge, E., 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect. Biochem. Physiol. 58, 166-174. https://doi.org/10.1002/arch.20049
  19. Hlaoui, A., Chiesa, O., Figueroa, C.C., Souissi, R., Mazzoni, E., Boukhris-Bouhachem, S., 2022. Target site mutations underlying insecticide resistance in tunisian populations of Myzus persicae (Sulzer) on peach orchards and potato crops. Pest Manag. Sci. 78, 1594-1604. https://doi.org/10.1002/ps.6778
  20. Hu, J., Chen, F., Wang, J., Rao, W., Lin, L., Fan, G., 2023. Multiple insecticide resistance and associated metabolic-based mechanisms in a Myzus Persicae (Sulzer) population. Agronomy 13, 2276.
  21. Jeschke, P., Nauen, R., Gutbrod, O., Beck, M.E., Matthiesen, S., Haas, M., Velten, R., 2015. Flupyradifurone (SivantoTM) and its novel butenolide pharmacophore: structural considerations. Pestic. Biochem. Physiol. 121, 31-38. https://doi.org/10.1016/j.pestbp.2014.10.011
  22. Koo, H.N., An J.J., Park S.E., Kim J.I., Kim G.H., 2014. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot. 55, 91-97. https://doi.org/10.1016/j.cropro.2013.09.010
  23. Lee, J.M., Jeon, J.C., Kang, W.J., Kim, H.K., Park, B.Y., Koo, H.N., Kim, G.H., 2022. Analysis of point mutations associated with fenvalerate- and imidacloprid-resistant cotton aphids, Aphis gossypii (Hemiptera: Aphididae) and selection of insecticides for effective control. Korean J. Pestic. Sci. 26, 140-149. https://doi.org/10.7585/kjps.2022.26.2.140
  24. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  25. Margaritopoulos, J.T., Kati, A.N., Voudouris, C.C., Skouras, P.J., Tsitsipis, J.A., 2021. Long-term studies on the evolution of resistance of Myzus persicae (Hemiptera: Aphididae) to insecticides in Greece. Bull. Entomol. Res. 111, 1-16. https://doi.org/10.1017/S0007485320000334
  26. Martinez-Torres, D., Foster, S.P., Field, L.M., Devonshire, A.L., Williamson, M.S., 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol. 8, 339-346. https://doi.org/10.1046/j.1365-2583.1999.83121.x
  27. Mingeot, D., Hautier, L., Jansen, J.P., 2021. Structuration of multilocus genotypes associated with insecticide resistance of the peach potato aphid, Myzus persicae (Sulzer), in potato fields in southern Belgium. Pest Manag. Sci. 77, 482-491. https://doi.org/10.1002/ps.6045
  28. Moores, G.D., Devine, G.J., Devonshire, A.L., 1994. Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pest Biochem. Physiol. 49, 114-120. https://doi.org/10.1006/pest.1994.1038
  29. Nabeshima, T., Kozaki, T., Tomita, T., Kono, Y., 2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem. Biophys. Res. Commun. 307, 15-22. https://doi.org/10.1016/S0006-291X(03)01101-X
  30. Nakao, T., Kawashima, M., Banba, S., 2019. Differential metabolism of neonicotinoids by Myzus persicae CYP6CY3 stably expressed in Drosophila S2 cells. J. Pestic. Sci. 44, 177-180. https://doi.org/10.1584/jpestics.D19-017
  31. Nauen, R., Denholm, I., 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch. Insect Biochem. Physiol. 58, 200-215. https://doi.org/10.1002/arch.20043
  32. Nauen, R., Jeschke, P., Velten, R., Beck, M.E., Ebbinghaus-Kintscher, U., Thielert, W., Wolfel, K., Haas, M., Kunz, K., Raupach, G., 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag. Sci. 71, 850-862. https://doi.org/10.1002/ps.3932
  33. Needham, P.H., Sawicki, R.M., 1971. Diagnosis of resistance to organophosphorus insecticides in Myzus persicae (Sulz.). Nature 230, 125-126. https://doi.org/10.1038/230125a0
  34. Oh, J.H., 2012. Molecular detection of toxicodynamic and metabolic factors associated with the pyrethroid and carbamate resistance in Myzus persicae (Sulzer). Master's Thesis, Seoul National University.
  35. Panini, M., Anaclerio, M., Puggioni, V., Stagnati, L., Nauen, R., Mazzoni, E., 2015. Presence and impact of allelic variations of two alternative s-kdr mutations, M918T and M918L, in the voltage-gated sodium channel of the green peach aphid Myzus persicae. Pest Manag. Sci. 71, 878-884. https://doi.org/10.1002/ps.3927
  36. Papadimitriou, F., Folia, M., Ilias, A., Papapetrou, P., Roditakis, E., Bass, C., Vontas, J., T Margaritopoulos, J., 2022. Flupyradifurone resistance in Myzus persicae populations from peach and tobacco in Greece. Pest Manag. Sci. 78, 304-312. https://doi.org/10.1002/ps.6637
  37. Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., Bass, C., 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLOS Genet. 6, e1000999.
  38. Rauch, N., Nauen, R., 2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch. Insect Biochem. Physiol. 54, 165-176. https://doi.org/10.1002/arch.10114
  39. Slater, R., Paul, V.L., Andrews, M., Garbay, M., Camblin, P., 2012. Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag. Sci. 68, 634-638. https://doi.org/10.1002/ps.2307
  40. Unruh, T., Knight, A., Bush, M.R., 1996. Green peach aphid (Homoptera: Aphididae) resistance to endosulfan in peach and nectarine orchards in Washington State. J. Eco. Entomol. 89, 1067-1073. https://doi.org/10.1093/jee/89.5.1067
  41. Voudouris, C.C., Williamson, M.S., Skouras, P.J., Kati, A.N., Sahinoglou, A.J., Margaritopoulos, J.T., 2017. Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. Pest Manag. Sci. 73, 1804-1812. https://doi.org/10.1002/ps.4539
  42. Wang, R., Wang, J., Che, W., Fang, Y., Luo, C., 2020. Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Prot. 132, 105132.
  43. Williamson, M.S., Martinez-Torres, D., Hick, C.A., Devonshire, A.L., 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, 51-60. https://doi.org/10.1007/BF02173204