DOI QR코드

DOI QR Code

A universal ZVS design for a family of quadratic boost converters

  • Yihai Li (Department of Electrical Engineering, Xi'an Jiaotong University) ;
  • Yan Zhang (Department of Electrical Engineering, Xi'an Jiaotong University) ;
  • Xinying Li (Department of Electrical Engineering, Xi'an Jiaotong University) ;
  • Jinjun Liu (Department of Electrical Engineering, Xi'an Jiaotong University)
  • Received : 2023.02.22
  • Accepted : 2023.11.02
  • Published : 2024.03.20

Abstract

In some application scenarios of new energy, high voltage gain DC-DC converters are widely employed especially for photovoltaic systems, fuel cell systems, and electric vehicles. The two-stage cascade boost integrated with a coupled-inductor and diode-capacitor voltage multiplier cell has been widely researched due to the advantages of a quadratic voltage gain and low voltage stress for the semiconductor devices. In this paper, the universal ZVS design for a family of quadratic converter is given. The proposed method maintains an extremely high voltage conversion ratio and low voltage stress on the power devices. In addition, the problem of the voltage gain being influenced by the load due to a small excitation inductance selection is solved. Moreover, ZVS operation for all of the switches and ZCS operation for most of the diodes are achieved to lower switching loss and suppress voltage spikes. The active clamp circuit is applied to lower the voltage stress and to control the ZVS operation. The design and operation principles, along with steady state and efficiency analyses of a specific converter are discussed in detail. In addition, a detailed comparison is presented among some similar topologies. Finally, a 320 W prototype circuit is implemented in laboratory to verify the performance of the proposed converter.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 52177193 and in part by the State Grid Shaanxi Electric Power Company under Grants SGSNXA00SNJS2312584.

References

  1. Forouzesh, M., Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-up DC-DC converters: a comprehensive review of voltage boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017)
  2. Liu, H., Hu, H., Wu, H., Xing, Y., Batarseh, I.: Overview of high-step-up coupled-inductor boost converters. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 689-704 (2016)
  3. Li, W., He, X.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239-1250 (2011)
  4. Schmitz, L., Martins, D.C., Coelho, R.F.: Comprehensive conception of high step-up DC-DC converters with coupled inductor and voltage multipliers techniques. IEEE Trans. Circuits Syst. I. 67(6), 2140-2151 (2020)
  5. Chen, S., et al.: Research on topology of the high step-up boost converter with coupled inductor. IEEE Trans. Power Electron. 34(11), 10733-10745 (2019)
  6. Guan, Y., Cecati, C., Alonso, J.M., Zhang, Z.: Review of high-frequency high-voltage-conversion-ratio DC-DC converters. IEEE J. Emerg. Sel. Top. Ind. Electron. 2(4), 374-389 (2021)
  7. Zhao, Q., Lee, F. C.: High performance coupled-inductor DC-DC converters. In: Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 109-113 (2003)
  8. Vazquez, N., Estrada, L., Hernandez, C., Rodriguez, E.: The tapped-inductor boost converter. In: IEEE Int. Symp. Ind. Electron (ISIE). pp. 538-543 (2007)
  9. Zhao, Y., Li, W., He, X.: Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell. IEEE Trans. Power Electron. 27(6), 2869-2878 (2012)
  10. Luo, F.L., Ye, H.: Positive output cascade boost converters. IEE Proc. Electr. Power Appl. 131(5), 590-606 (2004)
  11. Andrade, M.S.S., Martins, M.L.S.: Quadratic-boost with stacked zeta converter for high voltage gain applications. IEEE J. Emerg. Sel. Top. Power Electron. 5(4), 1787-1796 (2017)
  12. Chincholkar, S.H., Chan, C.: Design of fxed-frequency pulse width-modulation-based sliding-mode controllers for the quadratic boost converter. IEEE Trans. Circuits Syst. II, Exp. Briefs 64(1), 51-55 (2017)
  13. Sivaraj, D., Arounassalame, M.: High gain quadratic boost switched capacitor converter for photovoltaic applications. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). pp. 1234-1239 (2017)
  14. Tarzamni, H., Kurdkandi, N.V., Gohari, H.S., Lehtonen, M., Husev, O., Blaabjerge, F.: Ultra-high step-up DC-DC converters based on center-tapped inductors. IEEE Access 9, 136373-136383 (2021)
  15. Wang, Y., Qiu, Y., Bian, Q., Guan, Y., Xu, D.: A single switch quadratic boost high step up DC-DC converter. IEEE Trans. Ind. Electron. 66(6), 4387-4397 (2018)
  16. Chen, S.M., Liang, T.J., Yang, L.S., Chen, J.F.: A cascaded high step-up Dc-Dc converter with single switch for microsource applications. IEEE Trans. Power Electron. 26(4), 1146-1153 (2011)
  17. Chincholkar, S.H., Jiang, W., Chan, C.: An improved PWMbased sliding-mode controller for a DC-DC cascade boost converter. IEEE Trans. Circuits Syst. II, Exp. Briefs 65(11), 1639-1643 (2018)
  18. Leyva-Ramos, J., Mota-Varona, R., Ortiz-Lopez, M.G., DiazSaldierna, L.H., Langarica-Cordoba, D.: Control strategy of a quadratic boost converter with voltage multiplier cell for highvoltage gain. IEEE J. Emerg. Sel. Top. Power Electron. 5(4), 1761-1770 (2017)
  19. Andrade, M.S.S., Hey, H.L., Schuch, L., da Silva Martins, M.L.: Comparative evaluation of single switch high-voltage step-up topologies based on boost and zeta PWM cells. IEEE Trans. Ind. Electron. 65(3), 2322-2334 (2018)
  20. Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans. Circuits Syst. I. 55(2), 687-696 (2008)
  21. Hu, X., Gong, C.: A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques. IEEE Trans. Ind. Electron. 29(2), 789-800 (2014)
  22. Rao, B.T., De, D.: A single switch high voltage gain DC-DC converter with reduced switch voltage stress. IEEE J. Emerg. Sel. Top. Ind. Electron. 3(4), 978-987 (2022)
  23. Saadat, P., Abbaszadeh, K.: A single-switch high step-up DC-DC converter based on quadratic boost. IEEE Trans. Ind. Electron. 63(12), 7733-7742 (2016)
  24. Meier, M.B., Avelino da Silva, S., Badin, A.A., Romaneli, E.F.R., Gules, R.: Soft-switching high static gain DC-DC converter without auxiliary switches. IEEE Trans. Ind. Electron. 65(3), 2335-2345 (2018)
  25. Sathyan, S., Suryawanshi, H.M., Ballal, M.S., Shitole, A.B.: Soft-switching DC-DC converter for distributed energy sources with high step-up voltage capability. IEEE Trans. Ind. Electron. 62(11), 7039-7050 (2015)
  26. Seong, H., Kim, H., Park, K., Moon, G., Youn, M.: High step-up DC-DC converters using zero-voltage switching boost integration technique and light-load frequency modulation control. IEEE Trans. Power Electron. 27(3), 1383-1400 (2012)
  27. Wei, C., Zhao, Y., Xie, L., Smedley, K.M.: Analysis and design of a non-isolated high step-down converter with coupled inductor and ZVS operation. IEEE Trans. Ind. Electron. 69(9), 9007-9018 (2022)
  28. Hsieh, Y.-C., Cheng, H.-L., Chang, E.-C., Huang, W.-D.: A soft-switching interleaved buck-boost LED driver with coupled inductor. IEEE Trans. Power Electron. 37(1), 577-587 (2022)
  29. Li, X., Zhang, Y., Liu, J., Nie, C., Yang, Y.: A universal ZVS circuit design method for a family of interleaved high step-up converters with least device requirement. IEEE Trans. Ind. Electron. 68(12), 12396-12407 (2021)
  30. Li, X., Zhang, Y., Liu, J., Gao, Y., Cao, M.: A universal ZVT design for a family of multiphase interleaved high step-up converters with minimized voltage stress and wide operating range. IEEE Trans. Power Electron. 36(12), 13779-13791 (2021)