DOI QR코드

DOI QR Code

Slip prevention algorithm for dual-rotor PM synchronous motor

  • Yong‑Seok Ahn (R&D Institute, Hyundai Elevator) ;
  • Jin‑Young Kim (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Ki‑Young Song (Department of Electric Equipment R&D, VCTech) ;
  • Kwan‑Yuhl Cho (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Hag‑Wone Kim (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Seong‑Hoon Kim (Department of Electronic Engineering, Korea National University of Transportation)
  • Received : 2023.10.24
  • Accepted : 2023.12.15
  • Published : 2024.03.20

Abstract

This study proposes a slip prevention algorithm with a load angle controller to prevent the slip phenomenon in dual-rotor PM synchronous motor (DR-PMSM) drives. A DR-PMSM employs inherent magnetic coupling between the inner and outer rotors for power transmission. This structure may lead to slip and desynchronization between the inner and outer rotors at sudden load variations; therefore, a slip prevention algorithm is necessary to enhance its reliability. Conventional passive slip prevention algorithms may induce load angle oscillation around the critical load angle, which will result in desynchronization between the inner and outer rotors. The PI load angle controller proposed in this study can prevent slip and load angle oscillation near the critical angle. The effectiveness of the proposed slip prevention algorithm is verified through mathematical modeling and simulation with MATLAB/Simulink, as well as through an experiment on a horse-power DR-PMSM.

Keywords

Acknowledgement

This work was supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (RS-2021-KA163329).

References

  1. Mirnikjoo, S.A., Abbaszadeh, K., Abdollahi, S.E.: Multiobjective design optimization of a double-sided flux switching permanent magnet generator for counter-rotating wind turbine applications. IEEE Trans. Ind. Electron. 68(8), 6640-6649 (2021)
  2. Dalal, A., Kumar, P.: Design, prototyping, and testing of a dualrotor motor for electric vehicle application. IEEE Trans. Ind. Electron. 65(9), 7185-7192 (2018)
  3. Sun, L., Cheng, M., Tong, M.: Key issues in design and manufacture of magnetic-geared dual-rotor motor for hybrid vehicles. IEEE Trans. Energy Convers. 32(4), 1492-1501 (2017)
  4. Aiso, K., Akatsu, K., Aoyama, Y.: A Novel flux-switching magnetic gear for high-speed motor drive system. IEEE Trans. Ind. Electron. 68(6), 4727-4736 (2021)
  5. Bouheraoua, M., Wang, J., Atallah, K.: Slip recovery and prevention in pseudo direct drive permanent magnet machines. IEEE Trans. Ind. Appl. 51(8), 2291-2299 (2015)
  6. O'Sullivan, T.M., Bingham, C.M., Schofield, N.: Observer based tuning of two-inertia servo-drive systems with integrated SAW torque transducers. IEEE Trans. Ind. Electron. 54(2), 1080-1091 (2007)
  7. Yun, J.N., Su, J., Kim, Y.I., Kim, Y.C.: Robust disturbance observer for two-inertia system. IEEE Trans. Ind. Electron. 60(7), 2700-2710 (2013)
  8. Cheng, M., Han, P., Hua, W.: General airgap field modulation theory for electrical machines. IEEE Trans. Ind. Electron. 64(8), 6063-6074 (2017)
  9. Li, D., Qu, R., Li, J.: Topologies and analysis of flux modulation machines. Proc. IEEE Energy Convers. Congr. Expos. 5, 2153-2160 (2015)
  10. Huang, H., Li, D., Kong, W., Qu, R.: Torque performance of pseudo direct-drive machine with Halbach consequent pole. In: Proceedings of IEEE Energy Conversion Congress and Exposition, pp. 3286-3293 (2018)
  11. Bouheraoua, M.: Control for pseudo direct drive permanent magnet machines. PhD thesis. Univ. of Sheffield. (2013)
  12. Bouheraoua, M., Wang, J., Atallah, K.: Speed control for a pseudo direct drive permanent magnet machine with one position sensor on low-speed rotor. IEEE Trans. Ind. Appl. 50(6), 3825-3833 (2014)