DOI QR코드

DOI QR Code

Design and parameter optimization of high-power coupling mechanisms

  • Xueli Liu (School of Electrical Engineering, Tiangong University) ;
  • Hang Meng (School of Electrical Engineering, Tiangong University) ;
  • Yang Li (Tianjin Key Laboratory of New Energy Power Conversion, Transmission and Intelligent Control, Tianjin University of Technology) ;
  • Suya Kou (School of Electrical Engineering, Tiangong University) ;
  • Zhanglei An (School of Electrical Engineering, Tiangong University) ;
  • Chong Zhang (Tianjin Key Laboratory of New Energy Power Conversion, Transmission and Intelligent Control, Tianjin University of Technology)
  • Received : 2023.06.26
  • Accepted : 2023.10.31
  • Published : 2024.03.20

Abstract

To ensure the efficient operation of high-power (30 kw) wireless power transmission, this paper proposes a parallel double-layer rectangular coil with rounded corners that improves the transmission efficiency through parameter optimization. Finally, an experimental platform is established to verify the accuracy of the parameter optimization. The transmission efficiency of the optimized coil is increased from 82.5 to 91.3% when the transmission distance is 150 mm, and the transmission efficiency is increased by 15.8% and 30% when the unidirectional and bidirectional offset distances are 100 mm, respectively. In addition, two shielding methods, expanding shielding and vertical shielding, are proposed. Experimental results show that these two shielding methods can effectively reduce the edge effect of the traditional shielding structure and improve the transmission characteristics and electromagnetic safety.

Keywords

Acknowledgement

This paper is supported by National Natural Science Foundation of China (No. 51877151; No. 52011530185).

References

  1. Chen, Y., Yang, B., Li, Q., et al.: Reconfigurable topology for IPT system maintaining stable transmission power over large coupling variation. IEEE Trans. Power Electron. 35(5), 4915-4924 (2020)
  2. Ren, J., et al.: Research on dual-coupled LCL topology IPT system based on DDQ coil and its anti-deviation method. J. China Electr. Eng. 39(09), 2778-2788 (2019)
  3. Chen, Y., Yang, B., Zhou, X., et al.: A hybrid inductive power transfer system with misalignment tolerance using quadruple-D quadrature pads. IEEE Trans. Power Electron. 35(6), 6039-6049 (2020)
  4. Xiaohui, Q., Yunchang, et al.: A family of hybrid IPT topologies with near load-independent output and high tolerance to pad misalignment. IEEE Trans. Power Electron. 35(7), 6867-6877 (2020)
  5. Zheng, C., Ma, H., Lai, J.S., et al.: Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system. IEEE Trans. Power Electron. 30(11), 6108-6119 (2015)
  6. Li, Y., Zhao, J., Yang, Q., et al.: A novel coil with high misalignment tolerance for wireless power transfer. IEEE Trans. Magn. 55(6), 1-4 (2019)
  7. Ke, G., Chen, Q., Xu, L., et al.: Analysis and optimization of a double-sided S-LCC hybrid converter for high misalignment tolerance. IEEE Trans. Ind. Electron. 68(6), 4870-4881 (2020)
  8. Mai, J., Wang, Y., Yao, Y., et al.: Analysis and design of high-misalignment-tolerant compensation topologies with constant-current or constant-voltage output for IPT systems. IEEE Trans. Power Electron. 36(3), 12685-2695 (2021)
  9. Chen, W., Lu, W., Iu, H.C., et al.: Compensation network optimal design based on evolutionary algorithm for inductive power transfer system. IEEE Trans. Circ. Syst I: Regul. Pap. 67(12), 5664-5674 (2020)
  10. Hu, A.P., Mi, C.C., Zhao, L., et al.: A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics. IEEE Trans. Power Electron. 34(2), 1276-1285 (2019)
  11. Zhang, Y., Chen, S., Li, X., Tang, Y.: Design of high-power static wireless power transfer via magnetic induction: an overview. CPSS Trans. Power Electron. Appl. 6(4), 281-297 (2021)
  12. Budhia, M., Boys, J.T., Covic, G.A., et al.: Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Industr. Electron. 60(1), 318-328 (2013)
  13. Takanashi, H., Sato, Y., Kaneko, Y., et al. A large air gap 3 kW wireless power transfer system for electric vehicles//Energy conversion congress & exposition. pp 269-274 (2012)
  14. Villa, J.L., Sallan, J., Osorio, J., et al.: High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron. 59(2), 945-951 (2012)
  15. Park, H.H., Kwon, J.H., Kwak, S.I., et al.: Magnetic shielding analysis of a ferrite plate with a periodic metal strip. IEEE Trans. Magn. 51(8), 1-8 (2015)
  16. Ma X.: Research on magnetic field analysis and shielding technology of wireless charging system for inspection robots. Beijing Jiaotong University (2019)
  17. Li, Z., Zhu, C., Jiang, J., et al.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301-3316 (2016)
  18. Chen, Y., Mai, R., Zhang, Y., et al.: Improving misalignment tolerance for IPT system using a third coil. IEEE Trans. Power Electron. 34(4), 3009-3013 (2019)