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MONOPHONIC PEBBLING NUMBER OF SOME

NETWORK-RELATED GRAPHS
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Abstract. Chung defined a pebbling move on a graph G as the removal of
two pebbles from one vertex and the addition of one pebble to an adjacent

vertex. The monophonic pebbling number guarantees that a pebble can
be shifted in the chordless and the longest path possible if there are any

hurdles in the process of the supply chain. For a connected graph G a

monophonic path between any two vertices x and y contains no chords.
The monophonic pebbling number, µ(G), is the least positive integer n

such that for any distribution of µ(G) pebbles it is possible to move on

G allowing one pebble to be carried to any specified but arbitrary vertex
using monophonic a path by a sequence of pebbling operations. The aim

of this study is to find out the monophonic pebbling numbers of the sun

graphs, (Cn ×P2) +K1 graph, the spherical graph, the anti-prism graphs,
and an n-crossed prism graph.
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1. Introduction

Lagarias and Saks introduced the concept of pebbling in the graph theory
and later Chung in [Chung [1]] gave the literature form for it. Since then the
concept of pebbling in graph theory evolved and Hulbert in [[2]] gives a details
report on the development of different areas in graph pebbling. The research on
this area has been going on for the past 30 years. Let G be a connected graph
the vertex set be V (G) and the edge set be E(G). We consider a configuration
D on the vertices of G for which it is possible to shift a pebble to the desired
vertex. Santhakumaran, A. P et al.in [[4]] introduced the monophonic distance.
Lourdusamy et al.in [[3]] introduced the detour pebbling number and found the
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detour pebbling number for the standard graphs and various derived graphs
using detour paths. Detour pebbling number guarantees that a pebble can be
transferred even if there are any hurdles in the supply chain process. Similarly,
the monophonic pebbling number guarantees that a pebble can be shifted in the
chordless and the longest path possible if there are any hurdles in the process of
the supply chain. The monophonic distance between x and y is the length of the
longest x-y monophonic path, denoted as dm(x, y), in G. For a connected graph
G a monophonic path between any two vertices x and y contains no chords.[[4]]
A chord is the line segment that connects two points on a curve. Lourdusamy et
al. in [[5]] introduced monophonic pebbling number and monophonic t-pebbling
number “A monophonic pebbling number, µ (G, v), of a vertex v of a graph G is
the smallest number µ (G, v) such that at least one pebble may be moved to v
using a monophonic path by a sequence of pebbling moves for any placement of
µ (G, v) pebbles on the vertices of G. A monophonic path between u and v is a u-
v path that contains no chords. The maximum µ (G, v) over all the vertices of G
is the monophonic pebbling number of a graph, denoted as µ (G). A monophonic
t-pebbling number, µt (G, v), of a vertex v of a graph G is the smallest number
µt (G, v) such that it is possible to transfer t pebbles to v using a monophonic
path by a sequence of pebbling moves for any placement of µt (G, v) pebbles
on the vertices of G. The maximum of µt (G, v) over all vertices of G is the
monophonic t-pebbling number, denoted by µt(G).” The monophonic pebbling
number of some network-related graphs is determined in this study.

Theorem 1.1 (Lourdusamy et al.,[5]). For the cycle Cn , µ (Cn) is 2n−2 + 1.

Theorem 1.2 (Lourdusamy et al.,[5]). For the path Pn , µ (Pn) is 2n−1.

Theorem 1.3 (LOurdusamy et al., [5]). The monophonic pebbling number of
the wheel graph Wn is µ(Wn) = 2n−2 + 2.

Notation 1.1. The number of pebbles on the vertex x is denoted as p(x) and
p∼(x) is considered as the number of pebbles on the vertex x that is not on
the monophonic path. Let A ⊂ V (G). By p∼(A) we mean the total number
of pebbles placed on V (A). In this paper, we denote MK as the monophonic
path and M∼

K be the vertices that are not on MK , where K is a non-negative
positive number. For (xi) t−→(xl) refers taking off at least 2t pebbles from (xi)

and placing at least t pebbles on (xl). Throughout the paper, we use r to denote
the destination vertex.

2. Main results

Theorem 2.1. The monophonic pebbling number of (Cn × P2) +K1 for n ≥ 7

is 2n+2⌈n−6
4 ⌉ + n− 2⌈n−6

4 ⌉.

Proof : The graphs (Cn × P2) + K1 are like double wheel graphs, but the
vertices of the two wheels are joined pairwise. They could alternatively be
thought of as a prism Cn×P2, with every vertex joined to a common point. Let
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n ≥ 7. The vertex set of (Cn × P2) +K1 is {ui, vj , v0} where 1 ≤ i, j,≤ n. The
edge set of (Cn ×P2) +K1 is {viuj , viv0, ujv0, vivi+1, ujuj+1, v1vn, u1un} where
1 ≤ i, j,≤ n− 1. The number of vertices is 2n+ 1 and the edges are 5n.

The monophonic distance from v1 to any other vertex is at most n+ 2⌈n−6
4 ⌉.

Let this monophonic path be M1. Placing 2n+2⌈n−6
4 ⌉ − 1 pebbles on vn and one

pebble each on p∼(M1), We can not shift a pebble to v1. Thus, µ((Cn × P2) +

K1) ≥ 2n+2⌈n−6
4 ⌉ + n− 2⌈n−6

4 ⌉
Distributing 2n+2⌈n−6

4 ⌉+n−2⌈n−6
4 ⌉ pebbles on the vertices of (Cn×P2)+K1

for the configuration of C, we prove µ((Cn×P2)+K1) ≤ 2n+2⌈n−6
4 ⌉+n−2⌈n−6

4 ⌉.
Case 1: Let r = vi or uj be the destination vertex where 1 ≤ i, j ≤ n.
If p(vi+1, vi−1) ≥ 2 or p(ui+1, ui−1) ≥ 2 or p(v0) ≥ 2 , the proof is trivial.

Without loss of generality, let w = un be the destination to reach a pebble.
Let the monophonic path M1 be {v1, v2, u2, u3, u4, v4, v5, v6, u6 · · · , un}. The
monophonic path M1 has n+2⌈n−6

4 ⌉+1 vertices and M∼
1 which are not on M1

has n − 2⌈n−6
4 ⌉ vertices. If we place 2n+2⌈n−6

4 ⌉ pebbles on v1 and one pebble
each on the vertices of M∼

1 which are not on M1 then without using the pebbles
from M∼

1 we can transfer a pebble to r by using the monophonic path from v1
to w. Suppose p(V (M1)) < 2n+2⌈n−6

4 ⌉ and p∼(M1) > n− 2⌈n−6
4 ⌉, then moving

as many pebbles as possible to M1, we can transfer a pebble to r. If there

exists p∼(V (M1))
2 + p(V (M1)) ≥ 2n+2⌈n−6

4 ⌉ pebbles, we can transfer a pebble to
r. Similarly, we can prove this for all the vertices, since the monophonic distance

for all the vertices are same. Hence, µ((Cn×P2)+K1) = 2n+2⌈n−6
4 ⌉+n−2⌈n−6

4 ⌉.
Theorem 2.2. The monophonic pebbling number of the sun graph, µ(Sn), is
23 + (2n− 4).

The sun graph, Sn, is the graph with 2n vertices consisting of a central
complete graph Kn with an outer ring of n vertices, each of which is joined
to both endpoints of the closest outer ring of the central core. Let V (Sn) =
{v1, · · · , vn, u1, u2, · · · , un} and E(Sn) = {vivi+1, v1vn, viui, uivi+1, vnun,
unv1, vivj} where 1 ≤ i, j ≤ n− 1 and i ̸= j. The degree of vi is n+ 1 and ui is
2.

LetM1 be the monophonic path from u1 to un. ConsiderM1 = {u1, v2, vn, un, }.
The monophonic distance from u1 to any other vertices of Sn is at most 3. There
are 2n − 4 vertices that do not pass by M1. Placing 23 − 1 pebbles on u1 and
distributing one pebbles each on the remaining vertices that are not on M1, we
can not transfer a pebble to r = un. Thus, µ(Sn) ≥ 23 + (2n− 4)

Let C be the configuration of 23+(2n−4) pebbles on the vertices of Sn. Now
we prove the sufficient condition.

Case 1: Let r = uk, k ∈ {1, 2, 3, · · · , n}. Without loss of generality, consider
r = un. Then we arrive at having the monophonic path of length at most 3 from
u1. If p(V (M1)) ≥ 23, we are done. Let p(V (M1)) < 23, p∼(V (M1)) ≥ 2n − 3
and N(r) = 0. If there exist E, 2 ≤ E ≤ 3, pebbles each on ui where i ̸= 1, n, we
can shift V (ui) 2−→ V (M1)). Thus, using at least 2 pebbles on u1 we can transfer
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u11 + 1−−−→ v1 (1 + 1)
−−−−→

v(n) 1−→ r. Total number of pebbles used for this configuration

is at most 3(n− 2)+2 = 3n− 4. If there exist E, 2 ≤ E ≤ 3, pebbles each on vi
where i ̸= 1, 2, n, we can transfer V (vi) 2−→ V (M1)) 2−→ r. Using at least 4 pebbles

we can transfer a pebbles to r.
If there exists S pebbles each, 4 ≤ S ≤ 5, on any two vertices of uj or one ver-

tex of vi where i ̸= 1, n and j ̸= 1, 2, n, we can transfer a pebble to r. The total
number of pebbles used to reach the target through M1 is at least 8 pebbles if we
place on ui or 4 pebbles if the pebbles are on vi. Similarly, we can prove for all uk.

Case 2: Let r = vk, k ∈ {1, 2, 3 · · · , n}. Without loss of generality, let
r = vn. Let M2 be the monophonic path from un−1 to v1. Consider M2 =
{un−1, vn−1, v1}. The monophonic distance from un−1 to v1 is at most 2. There
are 2n − 3 vertices that do not pass by M2. Placing 22 pebbles on un−1 and
distributing one pebbles each on the remaining vertices that are not on M2, we
can transfer a pebble to r = v1.

Let p(V (M2)) < 22 , p∼(V (M2)) ≥ 2n − 2 and N(r) = 0. If there exist
any two vertices of uj with E, 2 ≤ E ≤ 3, pebbles each then we can transfer
(uj)(1 + 1)

−−−−→
V (vi), where i, j ̸= 1, n. Thus, we can transfer a pebble to r. Let

p(V (M2)) < 22 , p∼(V (M2)) ≥ 2n − 2 and N(r) = 1. If we place E pebble on
any one of the vertices of uj we are done. Similarly, we can prove for all vk.
Hence, µ(Sn), is 2

3 + (2n− 4).

Theorem 2.3. The monophonic pebbling number of the spherical graph S
(n)
2 is

22(2
n−1+1)−4 + 3.

Proof. The spherical graph,S
(n)
2 , is a connected graph with 2(2n−1+1) vertices

and 3×2n edges n ∈ N obtained from C2n+K̄2. Let V (S
(n)
2 ) = {v1, v2, · · · , v2n ,

u1, u2} and E(S
(n)
2 ) = {vivi+1, v1v2n , u1vi, u2vi} where 1 ≤ i ≤ 2n − 1.

Let M1 be the monophonic path from v2nn to v2. Consider M1 = {v2n , v2n−1 ,
v2n−2 , · · · , v3, v2}. The monophonic distance from v2n to any other vertex is at
most 2n−1. There are 3 vertices that do not pass by M1 are {u1, u2, v1}. Placing
22(2

n−1+1)−4−1 pebbles on v2n and distributing one pebble each on the remaining
vertices that are not on M1, we can not transfer a pebble to r = v2. Thus, µ(S

n
2 ),

is 22(2
n−1+1)−4 + 3

Let c be the configuration of 22(2
n−1+1)−4 +3 pebbles on the vertices of S

(n)
2 .

Now we prove the sufficient condition.

Case 1: Let r = vk, k ∈ {1, 2, 3, · · · , 2n}. Without loss of generality, consider
w = v2n . Then we arrive at having the monophonic path of length at most 2n−1

from v2 to any other vertex of the graph S
(n)
2 . Let the monophonic path M − 2

be {v2n , v2n−1 , v2n−2 , · · · , v3, v2}. If p(V (M2)) ≥ 22(2
n−1+1)−4, we are done.
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Let p(V (M2)) < 22(2
n−1+1)−4 , p∼(V (M1)) ≥ 4. If there exist E, 2 ≤ E ≤ 3

pebbles on any one of the vertices of M∼
2 then we can transfer a pebble to r.

Similarly, we can prove for all vk.

Case 2: Let r = u1 or u2.
Without loss of generality, let r = u1. Let M3 be the monophonic path from

u2 to u1. Consider M3 = {u1, v1, u2}. The monophonic distance from u1 to any
other vertex is at most 2. There are 2n−1 vertices that do not pass by M3 that
are {v2n , v2n−1 , v2n−2 , · · · , v3, v2}. Placing 4 pebbles on u2 and distributing one
pebble each on the remaining vertices that are not on M3, we can transfer a
pebble to r = u1.

Let p(V (M3)) < 3 , p∼(V (M2)) ≥ 2n−1 + 1. If there exist E, 2 ≤ E ≤ 3,
pebbles on any one of the vertices of M∼

2 then we can transfer a pebble to w.

Similarly, we can prove for u2 Hence, µ(S
(n)
2 ), is 22(2

n−1+1)−4 + 3. □

Theorem 2.4. The monophonic pebbling number of the closed sun graph, µ( ¯(Sn)),
is 2n−1 + n.

Proof. The closed sun graph, ¯(Sn), is the graph obtained from Sn ∪ Cn. Let
V (S̄n) = {v1, · · · , vn, u1, u2,
· · · , un} and E(S̄n) = {vivi+1, v1vn, uiui+1, u1un, viui, uivi+1, vnun, unv1, vivj}
where 1 ≤ i, j ≤ n− 1 and i ̸= j. The degree of vi is n+ 1 and ui is 4.

LetM1 be the monophonic path from v1 to un−1. ConsiderM1 = {v1, v2, u2, u3 · · ·
un−1, }. The monophonic distance from v1 to any other vertices of ¯(Sn) is at
most n− 1. There are n vertices that do not pass by M1. Placing 2n−1 − 1 peb-
bles on v1 and distributing one pebbles each on the remaining vertices that are
not on M1, we can not transfer a pebble to r = un−1. Thus, µ ¯(Sn) ≥ 2n−1 + n

Let C be the configuration of 2n−1 + n pebbles on the vertices of Sn. Now
we prove the sufficient condition.

Case 1: Let r = uk or vk , k ∈ {1, 2, 3, · · · , n}. Without loss of generality,
consider r = un. Then we arrive at having the monophonic path of length at
most n − 1 from v2. If p(V (M1)) ≥ 2n−1, we are done. Let p(V (M1)) < 2n−1,
p∼(V (M1)) ≥ n + 1. If there exist E, 2 ≤ E ≤ 3, pebbles each on any one of
the vertices that do not pass through M1 we can transfer a pebble to r. Hence,
µ ¯(Sn) = 2n−1 + n.

□

Theorem 2.5. The monophonic pebbling number of the anti-prism graph, µ(An),
is 2n + n− 1.

Proof. Proof : We obtain the anti-prism graph An by joining two cycles of equal
length. Let V (An) = {v1, · · · , vn, u1, u2, · · · , un} and E(An) = {vivi+1, v1vn,
uiui+1, u1un, viui, uivi+1, vnun, unv1} where 1 ≤ i ≤ n − 1. The degree of vi is
4 and ui is 4.

LetM1 be the monophonic path from v1 to vn−1. ConsiderM1 = {v1, v2, u2, u3,
u4, u5, · · ·un−1, vn−1}. The monophonic distance from v1 to any other vertices
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of An is at most n. There are n− 1 vertices that do not pass by M1. Let it be
M∼

1 . Placing 2n − 1 pebbles on v1 and distributing one pebbles each on M∼
1 ,

we can not transfer a pebble to r = vn−1. Thus, µ(An) ≥ 2n + n− 1
Let C be the configuration of 2n + n− 1 pebbles on the vertices of An. Now

we prove the sufficient condition.
Case 1: Let r = uk or vk , k ∈ {1, 2, 3, · · · , n}. Without loss of generality,

consider r = un. Then we arrive at having the monophonic path of length
at most n from v2. Let the monophonic path be M2. If p(V (M2)) ≥ 2n, we
are done. Let p(V (M2)) < 2n, p∼(V (M2)) ≥ n and N(r) = 0 If there exist
E, 2 ≤ E ≤ 3, pebbles each on the vertices of M∼

2 other than u1, vn and v1 we
can transfer at most n−4 pebbles to V (M2). By using (2n+n−1)−3(n−4) =
2n−2n−11 pebbles on M2 we can put a pebble on r. Hence, µ(An) = 2n+n−1.

□

Theorem 2.6. The monophonic pebbling number of an n-crossed prism graph,
µ(Rn), is 2n + n.

Proof. Proof : We obtain the n-crossed prism graph,Rn, when n is positive
even vertices and considering two disjoint cycle graphs of the same length. Let
V (Rn) = {v1, · · · , vn, u1, u2, · · · , un} and E(Rn) = {vivi+1, v1vn, uiui+1, u1un,
vjuj+1, vkuk−1, v1un, v8u1} where j = 2, 4, , 6, · · · , n−2 and k = 3, 5, 7 · · · , n−1.
The degree of vi is 3 and ui is 3.

Let M1 be the monophonic path from v2 to vn. Consider M1 = {v2, v3, v4, u5,
u6, u7, · · ·un, u1, vn}. The monophonic distance from v2 to any other vertices of
Rn is at most n. There are n − 1 vertices that do not pass by M1. Let it be
M∼

1 . Placing 2n − 1 pebbles on v2 and distributing one pebbles each on M∼
1 ,

we can not shift a pebble to r = vn. Thus, µ(An) ≥ 2n + n− 1
Let C be the configuration of 2n + n− 1 pebbles on the vertices of Rn. Now

we prove the sufficient condition.
Case 1: Let r = uk or vk , k ∈ {1, 2, 3, · · · , n}. Without loss of generality,

consider r = un. Then we arrive at having the monophonic path of length at
most n from u2. Let the monophonic path be M2. If p(V (M2)) ≥ 2n, we are
done. Let p(V (M2)) < 2n, p∼(V (M2)) ≥ n and N(r) = 0 If there exist E, 2 ≤
E ≤ 3, pebbles each on the vertices of M∼

2 other than u1, un−1 and v1 we can
shift at most n−4 pebbles to V (M2). By using (2n+n−1)−3(n−4) = 2n−2n−11
pebbles on M2 we can put a pebble on r. Hence, µ(Rn) = 2n + n− 1. □
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