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1. Introduction

Let φ : (Mm, g) −→ (Nn, h) be a smooth map between two pseudo-Riemannian

manifolds. We will call e(φ)x =
1

2

∑m
i=1 h(dφ(Ei), dφ(Ei)) the energy density of

φ at x for any {Ei}mi=1 orthonormal basis of the tangent space TxM can then
be integrated over M , and with an eye toward the physical concept of kinetic

energy
mv2

2
then the energy functional is defined by

E(φ) =
1

2

∫
M

|dφ|2dvg. (1)

A harmonic map φ is also a critical point of the energy functional E. The map
φ being harmonic means that

d

dt
E(φt)t=0 = 0,

holds for arbitrary smooth variation φt of φ, and denote the tension field τ(φ)
of φ by

τ(φ) = trg∇dφ =

m∑
i=1

ϵi

(
∇φ

Ei
Ei − dφ(∇Ei

Ei)
)
, (2)
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where ϵi = g(Ei, Ei) = ±1.
The notion of harmonicity generalizes the usual one for mappings between Eu-
clidean spaces, well known examples include geodesic curves. Next, the bihar-
monic maps φ : (Mm, g) −→ (Nn, h) are defined as critical points of the bienergy
functional:

E2(φ) =
1

2

∫
M

h(τ(φ), τ(φ))dvg. (3)

The Euler-Lagrange equation attached to the bienergy is

τ2(φ) = 0, (4)

where τ2(φ) is the bitension field given by

τ2(φ) = −(∆φτ(φ) + trgR
N (τ(φ), dφ)dφ), (5)

where △ = trace(∇φ∇φ−∇φ
∇) is the rough Laplacian on the sections of the pull-

back bundle φ−1TN , ∇φ is the pull-back connection, and RN is the curvature
tensor on N .
Let f : M → R be a smooth positive function on M . The f -energy functional
of the map φ is given by

Ef (φ) =
1

2

∫
M

fh(dφ(Ei), dφ(Ei))dνg, (6)

A map φ is called f -harmonic if it is a critical point of the energy functional Ef .
The Euler-Lagrange equation attached to the f -energy is

τf (φ) = 0,

where τf (φ) is the f -tension field given by

τf (φ) = fτ(φ) + dφ(gradf).

On the other hand the f -bienergy functional of the map φ is defined by

E2,f (φ) =
1

2

∫
M

fh(τ(φ), τ(φ))dvg. (7)

A map φ is called f -biharmonic if it is a critical point of the energy functional
E2,f . The Euler-Lagrange equation attached to the f -bienergy is

τ2,f (φ) = 0, (8)

where τ2,f (φ) is the f -bitension field given by

τ2,f (φ) = fτ2(φ) +△fτ(φ) + 2∇φ
gradfτ(φ). (9)

Clearly, any f -harmonic map was always a f -biharmonic map, and a proper
f -biharmonic map can not be f -harmonic. (see [27]).
Biharmonic and nonharmonic submanifolds have been studied by many authors
in [14, 12, 13, 16, 15, 30]. In [21], J. Inoguchi study biminimal submanifolds in
contact 3-manifolds and biminimality of Legendre curves and Hopf cylinders. In
[29], Ye-Lin Ou, the author introduced the concept of f -biharmonic submani-

fold. In [20], S. Güvenç and C. Özgür studied f -biharmonic Legendre curves in
Sasakian manifold.
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In this paper, we study the f -biharmonicity curves in three-dimensional gener-
alized symmetric spaces and we give the necessary and sufficient conditions for
f−biharmonic curves in M3.

2. Preliminaries

The M3 generalized symmetric space is the three-dimensional real space R3

endowed with the pseudo-Riemannian metric gϵ,λ given by

gϵ,λ = ϵ(e2tdx2 + e−2tdy2) + λdt2, (10)

where ϵ = ±1 and λ ̸= 0 is a real constant. Depending on the values of ϵ and λ.
We take the following orthonormal basis on M3

E1 = e−t ∂

∂x
, E2 = et

∂

∂y
, E3 =

1√
|λ|

∂

∂t
. (11)

The non-vanishing components of the Levi-Civita connection are given by:

∇E1
E1 = −

ϵϵ1√
|λ|

E3, ∇E1
E3 =

1√
|λ|

E1, ∇E2
E2 =

ϵϵ1√
|λ|

E3, ∇E2
E3 = −

1√
|λ|

E2, (12)

where ϵ1 =
λ

|λ|
.

The non-vanishing Lie brackets are given by:[
E2, E3

]
=

−1√
|λ|

E2,
[
E1, E3

]
=

1√
|λ|

E1. (13)

The Riemannian curvature operator is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (14)

The Riemannian curvature tensor is given by

R(X,Y, Z,W ) = −g(R(X,Y )Z,W ) (15)

Moreover we put

Rabc = R(Ea, Eb)Ec, Rabcd = R(Ea, Eb, Ec, Ed) (16)

By using equation 12, 13 and 14, we have
R(E1, E2)E1 = − ϵ

λ
E2, R(E1, E2)E2 =

ϵ

λ
E1

R(E1, E3)E1 =
ϵ

λ
E3, R(E1, E3)E3 = − 1

|λ|
E1

R(E2, E3)E2 =
ϵ

λ
E3, R(E2, E3)E3 = − 1

|λ|
E2.

(17)

and 
R1212 =

1

λ
, R1221 = − 1

λ
,

R1313 = − ϵ

|λ|
, R1331 =

ϵ

|λ|
,

R2323 = − ϵ

|λ|
, R2332 =

ϵ

|λ|
.

(18)
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The non-vanishing Ricci curvature components {Ricij} are given by

Ric33 = − 2

|λ|
. (19)

3. Main results

3.1. In this section we give the necessary and sufficient conditions for
f−biharmonic curves in M3 . Suppose that γ : I → M3 is a curve parameterized

by arc-length. The Frenet orthonormal frame
{
T = γ′,N,B

}
associated to the

γ are following the Frenet formulas ∇γ′T = ϵkN
∇γ′N = −ϵkT+ ϵ1τB
∇γ′B = −ϵτN

where k = |∇γ′γ′| is the geodesic curvature of γ and τ its the geodesic torsion
and

g(T,T) = g(N,N) = ϵ, g(B,B) = ϵ1.

We have

τ(γ) = ∇γ
∂
∂s

(dγ(
∂

∂s
))− dγ(∇ ∂

∂s

∂

∂s
)

= ∇γ
∂
∂s

(dγ(
∂

∂s
)) = ∇γ′γ′ = ∇TT = ϵkN. (20)

and by definition we have

R(T,N,T,N) =
1

λ

(
2B2

3 − 1
)
, (21)

R(T,N,T,B) = − 2

λ
N3B3, (22)

where N3 and B3 are the third components of the vectors N and B respectively.
By replacing equation 20 in the equation of bitension field 5, we get

τ2(γ) =∇3
TT−R(∇TT,T)T

=− 3kk′T+ (ϵk′′ − ϵk3 − ϵ1kτ
2)N

+ (2ϵϵ1k
′τ + ϵϵ1kτ

′)B− ϵkR(N,T)T. (23)

and

∇γ
gradfτ(γ) = ∇γ

gradf ϵkN = f ′∇T(ϵkN) = f ′(−k2T+ ϵk′N+ ϵϵ1kτB) (24)

From equations 20, 23 and 24 we calculate the f−bitension field of the curve
γ

τ2,f (γ) = −3fkk′T+ f(ϵk′′ − ϵk3 − ϵ1kτ
2)N+ f(2ϵϵ1k

′τ + ϵϵ1kτ
′)B

+f ′′ϵkN+ 2f ′(−k2T+ ϵk′N+ ϵϵ1kτB)− fϵkR(N,T)T. (25)
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Now, by taking the inner product of equation 25 and using equations 21 and 22
respectively with T,N and B, we have:

Theorem 3.1. The curve γ is f -biharmonic curve in M3 if and only if the
following equations hold

3fkk′ = −2f ′k2,

fk′′ − fk3 − fϵϵ1kτ
2 + f 1

λk = 2f 1
λkB

2
3 − 2f ′k′ + f ′′k,

−2fk′τ − fkτ ′ = f 2ϵ1
λ kN3B3 + 2f ′kτ.

(26)

3.2. In this section we discus the f−harmonicity of the curve γ, depending on
the value of k and τ .

• If the curvature k = c1 ̸= 0 of γ is constant non null, the first equation in
26 gives that

f ′ = 0 ⇒ f = constant = c2.

By replacing k and f in the second and the third equations in 26, we get the
conditions of the f−biharmonicity of γ given by

−c1 − ϵϵ1τ
2 + 1

λ = 2 1
λB

2
3 ,

τ ′ = − 2ϵ1
λ N3B3.

(27)

Corollary 3.2. Let γ be a curve in M3 with non-null constant curvature in
M3. Then γ is f -biharmonic curve if and only if the equations given in 27 are
satisfied.

• If the torsion τ = c3 ̸= 0 of γ is constant non-null, the first equation in 26
gives that

f = c4k
−3
2 . (28)

And the third equation in 26 gives that

−2c3(fk)
′ =

2ϵ1
λ

N3B3fk ⇔ f =
c5
k
e

−ϵ1
c3λ

∫
N3B3ds. (29)

Now, combining both equations 28 and 29 gives

k =

√
c4
c5

e
ϵ1

2c3λ

∫
N3B3ds. (30)

By replacing f given in 28 in the second equation in 26, we get the conditions
of the f−biharmonicity of γ given by

c4k
′′k

−3
2 −c4k

3
2+(−c4c

2
3ϵϵ1+

1

λ
2c4

1

λ
B2

3)k
−1
2 = 3c4k

′2k
−5
2 +

15

4
c4k

′2k
−5
2 −3

2
c4k

′′k
−3
2 .

(31)

Corollary 3.3. Let γ be a curve in M3 with a non-null constant torsion in M3.
Then γ is f -biharmonic curve if and only if the curvature k of the curve γ given
in the equation 30 satisfied the equations given in 31.



90 Yasmine Bahous, Lakehal Belarbi, Mansour Belarbi and Hichem Elhendi

• If the torsion of the curve γ is null( τ = 0), according to the value of f
given in 28 and the second and third equations in 26, we get the conditions of
the f−biharmonicity of γ given by c4k

′′k
−3
2 − c4k

3
2 + ( 1λ2c4

1
λB

2
3)k

−1
2 = 3c4k

′2k
−5
2 + 15

4 c4k
′2k

−5
2 − 3

2c4k
′′k

−3
2

N3B3 = 0
(32)

Corollary 3.4. Let γ be a curve in M3 with null torsion. Then γ is f -biharmonic
curve if and only if the curvature k of the curve γ given in the equation 30 sat-
isfied the equations given in 32.

• If γ be a curve with constant non-null curvature and constant non-null
torsion. So immediately by the first equation in 26 gives that f is constant
and the third equation in 26 gives N3B3 = 0. We get the conditions of the
f−biharmonicity of γ given by IfB3 ̸= 0:B2

3 = λ
2 (k + τ2ϵϵ1 − 1

λ )

IfB3 = 0:k + τ2ϵϵ1 − 1
λ = 0

(33)

Corollary 3.5. Let γ be a curve in M3 with constant non-null curvature and
constant non-null torsion in M3. Then γ is f -biharmonic curve if and only if
the equations given in 33 are satisfied.

Theorem 3.6. Let γ be a curve in M3, then γ is proper f -biharmonic if and
only if :
(i) τ = 0, f = c4k

− 3
2 and the curvature k of the curve γ satisfied the equation

3(k′)
2 − 2kk′′ = 4k2(k2 + 2 1

λB
2
3 − 1

λ )

(ii) τ ̸= 0, τ
k = exp

∫ −2N3B3
|λ|τ

c12 , and the curvature k satisfied the equation

3(k′)
2 − 2kk′′ = 4k2(k2(1 + ϵϵ1

exp

∫ −4N3B3
τ|λ|

c44 ) + 2 1
λB

2
3 − 1

λ )
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