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Abstract. In this paper, we will prove a fixed point theorem for self-

mappings on a generalized quasi-ordered metric space which is a general-
ization of the concept of a generalized metric space with a partial order and

we investigate a genralized quasi-ordered metric space related with fuzzy

normed spaces. Further, we prove the stability of some functional equations
in fuzzy normed spaces as an application of our fixed point theorem.
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1. Introduction

The theory of fuzzy spaces has much progressed as the theory of randomness
has developed. Some mathematicians have defined fuzzy norms on a vector space
from various points of view([2], [9], [15], [22], [29]). Later, Cheng and Mordeson
[5] gave a new definition of a fuzzy norm in such a manner that the correspond-
ing fuzzy metric is of Kramosil and Michalek type [16] and investigated some
properties of fuzzy normed spaces [3]. We use the definition of fuzzy normed
spaces given in [2], [21], [22].

Definition 1.1. Let X be a real vector space. A function N : X × R −→ [0, 1]
is called a fuzzy norm on X if for any x, y ∈ X and any s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and limt→∞ N(x, t) = 1;
(N6) for any x ̸= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.

Received July 27, 2023. Revised September 4, 2023. Accepted November 8, 2023.

© 2024 KSCAM.

93



94 Chang Hyeob Shin

Let (X,N) be a fuzzy normed space. A sequence {xn} in X is said to be
convergent in (X,N) if there exists an x ∈ X such that limn→∞ N(xn−x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} in (X,N)
and one denotes it by N − limn→∞ xn = x. A sequence {xn} in X is said to
be Cauchy in (X,N) if for any ϵ > 0, there is an m ∈ N such that for any
n ≥ m and any positive integer p, N(xn+p − xn, t) > 1 − ϵ for all t > 0. It is
well known that every convergent sequence in a fuzzy normed space is Cauchy.
A fuzzy normed space is said to be complete if each Cauchy sequence in it is
convergent and a complete fuzzy normed space is called a fuzzy Banach space.

Definition 1.2. Let X be a non-empty set. Then a mapping d : X2 −→ [0,∞]
is called a generalized metric on X if d satisfies the following conditions: for any
x, y, z ∈ X,

(D1) d(x, y) = 0 if and only if x = y,
(D2) d(x, y) = d(y, x), and
(D3) d(x, y) ≤ d(x, z) + d(z, y).

In case, (X, d) is called a generalized metric space.

A sequence {xn} in a generalized metric space (X, d) is called Cauchy in
(X, d) if limn,m→∞ d(xn, xm) = 0 and a generalized metric space (X, d) is called
complete if every Cauchy sequence in (X, d) is convergent.

We recall the fixed point theorem from [17].

Theorem 1.3. [17] Suppose that (X, d) is a generalized complete metric space
and a function T : X −→ X is a contraction, that is, there exists a constant L
with 0 < L < 1 such that, whenever d(x, y) < ∞,

d(Tx, Ty) ≤ Ld(x, y).

Let x0 ∈ X and consider a sequence {Tnx0} of successive approximations with
the initial element x0. Then the following alternative holds:
either

(i) for all n ≥ 0, one has d(Tnx0, T
n+1x0) = ∞

or
(ii) the sequence {Tnx0} is convergent to a fixed point of T in (X, d).

Nieto and Rodŕıguez-López [24] proved a fixed point theorem in a partially
ordered set as follows.

Theorem 1.4. [24] Let (X,≤) be a partially ordered set. Suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let T :
X −→ X be a continuous and non-decreasing mapping such that there exists a
constant L ∈ (0, 1) with

d(Tx, Ty) ≤ Ld(x, y) (1)

for all x, y ∈ X with x ≥ y. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a
fixed point.
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Moreover, in [13], the following fixed point theorem for a partially ordered
generalized complete metric space was proved.

Theorem 1.5. [13] Let (X,≤) be a partially ordered set. Suppose that (X, d) is
a generalized complete metric space and a function T : X −→ X is a continuous
and non-decreasing mapping such that there exists a constant L ∈ (0, 1) such
that

d(Tx, Ty) ≤ Ld(x, y).

for all x, y ∈ X with x ≥ y. If there exists x0 in X with x0 ≤ Tx0, then the
following alternative holds:
either

(i) for all n ≥ 0, one has d(Tnx0, T
n+1x0) = ∞

or
(ii) the sequence {Tnx0} is convergent to a fixed point of T in (X, d).

In this paper, we will prove a fixed point theorem for self-mappings on a
generalized quasi-ordered metric space (X, d,≤X) which is a generalization of
the concept of a generalized metric space with a partial order and we investigate a
genralized quasi-ordered metric space related with fuzzy normed spaces. Further,
we prove the stability of some functional equations in fuzzy normed spaces as
an application of our fixed point theorem.

2. Quasi-order and Fixed point theorem

We start with the definition of a quasi-order. A relation ≤X on a set X is
called a quasi-order on X if ≤X satisfies reflexive and transitive. Let ≤X be a
quasi-order on X. Then x and y are called comparable, denoted by x ∼X y or
simply x ∼ y, if x ≤X y or y ≤X x.

A triple (X, d,≤X) is called a generalized quasi-ordered metric space if (X, d)
is a generalized metric space and ≤X is a quasi-order on X. A sequence
{xn} in a generalized quasi-ordered metric space (X, d,≤X) is called Cauchy if
limn,m→∞ d(xn, xm) = 0 and a generalized quasi-ordered metric space (X, d,≤X

) is called d-complete if every non-decreasing Cauchy sequence in (X, d,≤X) is
convergent.

Theorem 2.1. Let (X, d,≤X) be a d-complete space such that

if {xn} is a non-decreasing sequence in (X,≤X) and xn → x in (X, d),

then xn ≤X x for all n ∈ N.
Let T : X −→ X be a non-decreasing mapping such that there exists an L ∈ (0, 1)
such that

d(Tx, Ty) ≤ Ld(x, y). (2)

for all x, y ∈ X with x ∼ y. If there exists an x0 in X with x0 ≤X Tx0, then
the following alternative holds:
either
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(i) for all n ≥ 0, one has d(Tnx0, T
n+1x0) = ∞

or
(ii) the sequence {Tnx0} is convergent to a fixed point of T in (X, d). Further,

if d(x0, Tx0) < ∞, then

d(x, x0) ≤
L

1− L
d(x0, Tx0). (3)

for all x ∈ X.

Proof. Suppose that there exists an l ∈ N such that d(T lx0, T
l+1x0) < ∞. Since

T is non-decreasing and x0 ≤X Tx0, T
n−1x0 ≤X Tnx0 for all n ∈ N. By (2), we

obtain

d(Tnx0, T
n+1x0) ≤ Ln−ld(T lx0, T

l+1x0) < ∞
for all n ∈ N with n ≥ l. Hence for m > n ≥ l, we have

d(Tmx0, T
nx0)

≤
m−1∑
i=n

d(T ix0, T
i+1x0) ≤

Ln−l(1− Lm−n)

1− L
d(T lx0, T

l+1x0)
(4)

and so the sequence {Tnx0} is a non-decreasing Cauchy sequence in (X, d,≤X).
Since (X, d,≤X) is d-complete, there exists an y ∈ X such that Tnx0 → y in
(X, d,≤X).

Now, we claim that y is the fixed point of T . Let ϵ > 0 be given. Since {Tnx0}
is a non-decreasing sequence in (X,≤X) and Tnx0 → y in (X, d), Tnx0 ≤X y
for all n ∈ N. Since Tnx0 → y in (X, d,≤X), there exists a k ∈ N such that
k > l and

k ≤ n ⇒ d(Tnx0, y) <
ϵ

2
. (5)

Since T is a non-decreasing mapping, Tn+1x0 ≤X Ty for all n ∈ N and so by
(2) and(5), we have

d(Ty, y) ≤ d(Ty, T k+1x0) + d(T k+1x0, y) ≤ Ld(y, T kx0) + d(T k+1x0, y) < ϵ

Thus Ty = y. Moreover, if d(x0, Tx0) < ∞, then, by (4), we have (3). □

For a fuzzy normed space (K,N), define a relation ≤K on K by

x ≤K y if N(x, t) ≥ N(y, t), ∀t > 0.

We can show the following theorem:

Theorem 2.2. Let (K,N) be a fuzzy normed space. Then we have the following
properties :

(1) ≤K is a quasi-order on (K,N) and
(2) if {xn} is a non-decreasing sequence in (K,≤K) and xn → x in (K,N), then
xn ≤K x for all n ∈ N.
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Proof. The proof of (1) is trivial.
(2) Suppose that {xn} is a non-decreasing sequence in (K,≤K) and xn → x

in (K,N).
case 1 : x = 0. Let m ∈ N. Since {xn} is a non-decreasing sequence in

(K,≤K), N(xm, t) ≥ N(xm+p, t) for all non-negative integer p and all t > 0 and
since xn → 0 in (K,N),

N(xm, t) ≥ lim
p→∞

N(xm+p, t) = lim
p→∞

N(xm+p − 0, t) = 1

for all t > 0. Hence N(xm, t) = 1 for all t > 0 and so xm = 0. Thus xm ≤K x
for all m ∈ N.

case 2 : x ̸= 0. Suppose that there exists an l ∈ N such that xl ̸≤K x. Then

N(xl, t0) < N(x, t0) (6)

for some t0 > 0. Let ϵ = N(x, t0) −N(xl, t0). Then ϵ > 0 and since xn → x in
(K,N), there exists a k ∈ N such that l < k and N(xn − x, t) ≥ 1 − ϵ for all
n ≥ k and all t > 0. Let n ∈ N with n ≥ k and s ∈ R with 0 < s < t0. Since
1−N(x, t0) ≥ 0,

N(xn, t0) ≥ min{N(xn − x, t0 − s), N(x, s)}
≥ min{1− ϵ,N(x, s)}
= min{1−N(x, t0) +N(xl, t0), N(x, s)}
≥ min{N(xl, t0), N(x, s)}.

(7)

Letting s → t0 in (7), by (N6) and (6), we have

N(xn, t0) = min{1−N(x, t0) +N(xl, t0), N(x, t0)} = N(xl, t0), (8)

because xl ≤K xn. Suppose that 1 − N(x, t0) + N(xl, t0) ≤ N(x, t0). Then by
(8), we have

N(xn, t0) = 1−N(x, t0) +N(xl, t0) = N(xl, t0) (9)

for all n ∈ N with n ≥ k and
N(x, t0) = 1. (10)

Take any real number r with r > t0. By (10), we have

N(xn, r) ≥ min{N(xn − x, r − t0), N(x, t0)}
= N(xn − x, r − t0)

(11)

for all n ∈ N with n ≥ k. Since N − limn→∞ xn = x, by (11), we have

lim
n→∞

N(xn, r) = 1. (12)

Let γ > 0 be given. Since {xn} is non-decreasing, xl ≤K xk and soN(xk, t0) ≤
N(xl, t0) < 1. By (N2), xk ̸= 0 and by (N6), N(xk, ·) is continuous on R, there
is a δ > 0 such that for any real number r with t0 < r < t0 + δ,

N(xk, r) < N(xk, t0) + γ.
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Let m ∈ N with k ≤ m. Since {xn} is non-decreasing in (K,≤K), xk ≤K xm

and so N(xm, r) ≤ N(xk, r). Hence we have

N(xm, r) < N(xk, t0) + γ.

By (12), we get

1 ≤ N(xk, t0) + γ

and thus N(xk, t0) = 1. Hence by (9), N(xl, t0) = 1 which is a contradiction to
N(xl, t0) < N(x, t0). Hence 1 − N(x, t0) + N(xl, t0) > N(x, t0). Then by (8),
we have

N(x, t0) = N(xl, t0)

which is a contradiction and thus one has result. □

It is well known that for any normed space (X, || · ||) with |X| ≥ 2, mappings
NX , N ′

X : X × R −→ [0, 1], defined by

NX(x, t) =

{
0, if t ≤ 0

t
t+||x|| , if t > 0

and

N ′
X(x, t) =

{
0, if t < ∥x∥
1, if t ≥ ∥x∥

are fuzzy norms on X. The quasi-order ≤X on (X,NX)((X,N ′
X), resp.), is not

a partially order.
A fuzzy normed space (X,N) is called d-complete if every non-decreasing

Cauchy sequence in (X,N,≤X) is convergent in (X,N), where ≤X is the quasi-
order on X, defined by x ≤X y if N(x, t) ≥ N(y, t) for all t > 0.

In the following, assume that X is a linear space, (Y,N) is d-complete, and
(Z,N ′) is a fuzzy normed space.

Let S = {g | g : X −→ Y } and define a relation ≤s on S by

g ≤s h if g(x) ≤Y h(x), ∀x ∈ X.

Then clearly, ≤s is a quasi-order on S. Let ϕ : X2 −→ [0,∞) be a mapping and

Φ(x, y, t)

= min[{N ′(ϕ(aix, biy), pit)|1 ≤ i ≤ l} ∪ {N ′(ϕ(ciy, dix), qit)|1 ≤ i ≤ m}
∪ {N ′(ϕ(eix, kix), sit)|1 ≤ i ≤ n}]

for some rational numbers ai, bi, ci, di, ei, ki, positive real numbers pi, qi, si, and
natural numbers l,m, n. Define a mapping d : S2 −→ [0,∞] by

d(g, h) = inf{c ∈ R+ | N(f(x)− g(x), ct) ≥ Φ(x, 0, t), ∀x ∈ X, ∀t > 0}.

Then (S, d) is a generalized metric space ([18]) and using Theorem 2.2, we have
the following theorem.
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Theorem 2.3. (S, d,≤s) is a d-complete space such that
if {gn} is a non-decreasing sequence in (S, d,≤s) and gn → g in (S, d,≤s),
then gn ≤s g for all n ∈ N.

Proof. Let {hn} be a non-decreasing Cauchy sequence in (S, d,≤s). Then for
any x ∈ X, {hn(x)} is a non-decreasing Cauchy sequence in Y and since Y is
d-complete, there exists a mapping h : X −→ Y such that N − limn→∞ hn(x) =
h(x). By Theorem 2.2, hn(x) ≤Y h(x) for all n ∈ N and x ∈ X. Hence hn ≤s h
for all n ∈ N.

Let ϵ be a real number with 0 < ϵ < 1. Then there exists a k ∈ N such that
for n > m ≥ k,

d(hn, hm) ≤ ϵ

4
. (13)

Let x ∈ X. For n > m ≥ k, hm ≤s hn and by (13), we have

N
(
hn(x)− hm(x),

ϵ

4
t
)
≥ Φ(x, 0, t)

and

N
(
hk(x)− h(x),

ϵ

2
t
)
≥ min

{
N
(
hk(x)− hn(x),

ϵ

4
t
)
, N

(
hn(x)− h(x),

ϵ

4
t
)}

≥ min
{
Φ(x, 0, t), N

(
hn(x)− h(x),

ϵ

4
t
)}

for all n ≥ k and all t > 0. Since N − limn→∞ hn(x) = h(x) in Y ,

N
(
hk(x)− h(x),

ϵ

2
t
)
≥ Φ(x, 0, t).

Hence d(hk, h) ≤ ϵ
2 and so, by (13), we have d(hn, h) < ϵ for all n ≥ k. Thus

hn → h in (S, d,≤s) and so (S, d,≤s) is a d-complete space.
Suppose that {gn} is a non-decreasing sequence in (S, d,≤s) and gn → g in

(S, d,≤s). By the definition of ≤s and Theorem 2.2, gn ≤s g for all n ∈ N. □

3. Applications

In this section, we will prove the fuzzy stability as an application of our fixed
point theorem. We start with the following theorem:

Theorem 3.1. Let a, k be natural numbers and L,M positive real numbers with
L < 1. Let ϕ : X2 −→ [0,∞) be a mapping such that

N ′(ϕ(ax, ay), t) ≥ N ′
(
ϕ(x, y),

1

akL
t
)

(14)

for all x ∈ X and all t > 0. Let f : X −→ Y be a mapping such that

N(akf(x)− f(ax),Mt) ≥ Φ(x, 0, t), N(f(x), t) ≥ N
( 1

ak
f(ax), t

)
(15)
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for all x ∈ X and all t > 0. Then there exists an unique mapping F : X −→ Y
such that N − limn→∞

1
akn f(a

n) = F (x) and

N
( 1

akn
f(anx), t

)
≥ N(F (x), t), F (ax) = akF (x)

N
(
F (x)− f(x),

ML

ak(1− L)

)
≥ Φ(x, 0, t)

(16)

for all x ∈ X, all t > 0, and all n ∈ N ∪ {0}.

Proof. Define a mapping d : S −→ S by

d(g, h) = inf{c ∈ R+ | N(g(x)− h(x), ct) ≥ Φ(x, 0, t), ∀x ∈ X, ∀t > 0}.

By Theorem 2.3, (S, d,≤s) is a d-complete metric space such that if {gn} is
a non-decreasing sequence in (S, d,≤s) and that if gn → g in (S, d,≤s), then
gn ≤s g for all n ∈ N.

Define a mapping T : S −→ S by Tf(x) = 1
ak f(ax). Then T is a non-

decreasing mapping. Suppose that f, g ∈ S with f ∼ g. For any c ∈ R+ with
N(f(x)− g(x), ct) ≥ Φ(x, 0, t) for all x ∈ X and all t > 0, by (14), we have

N(Tf(x)− Tg(x), Lct) ≥ Φ(ax, 0, Lakt) ≥ Φ(x, 0, t).

Hence d(Tf, Tg) ≤ Ld(f, g) and by Theorem 2.1, there exists an unique mapping
F : X −→ Y with (16). □

In 1940, Ulam proposed the following stability problem ([28]):
“Let G1 be a group and G2 a metric group with the metric d. Given a constant

δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→ G2

satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”
In the next year, Hyers [11] gave a partial solution of Ulam,s problem for the
case of approximate additive mappings. Subsequently, his result was generalized
by Aoki ([1]) for additive mappings, and by Rassias [27] for linear mappings,
to consider the stability problem with unbounded Cauchy differences. A gen-
eralization of the Rassias’ theorem was obtained by Gǎvruta [10] by replacing
the unbounded Cauchy difference by a general control function in the spirit of
Rassias approach. During the last decades, the stability problems of functional
equations have been extensively investigated by a number of mathematicians([6],
[7], [8], [23]).

Recently, the stability problems in the fuzzy normed space has been studied
([14], [19], [21], [22]). In 2008, for the first time, Mirmostafaee and Moslehian
[19], [21] used the definition of a fuzzy norm in [2] to obtain a fuzzy version of
the stability for the Cauchy functional equation

f(x+ y) = f(x) + f(y)

and the quadratic functional equation
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f(x+ y) + f(x− y) = 2f(x) + 2f(y)

Rassias [26], Park and Jung [25] investigated the following cubic functional
equations

f(x+ 2y) + 3f(x) = 3f(x+ y) + f(x− y) + 6f(y) (17)

and

f(3x+ y) + f(3x− y) = 3f(x+ y) + 3f(x− y) + 48f(x), (18)

and proved the generalized Hyers-Ulam stability for it, respectively. It is easy
to see that the function f(x) = ax3 is a solution of the functional equation (17)
and (18), which explains why they are called a cubic functional equation. Mir-
mostafaee and Moslehian [20] proved the stability of a cubic functional equation
in a fuzzy normed space.

Cádariu and Radu [4] applied the fixed point method to investigate the Jensen
functional equation and presented a short and simple proof (different from the
direct method initiated by Hyers in 1941) for the Hyers-Ulam stability of the
Jensen functional equation.

Define a k-mapping f : X −→ Y as follows: if k = 1, then f is an additive
mapping, if k = 2, then f is a quadratic mapping, and if k = 3, then f is a
cubic mapping, · · ·, and define a k-functional operator Dk on S as follows: if
Dkh(x, y) = 0 for all x, y ∈ X, then h is a k-mapping.

By Theorem 3.1, we have the following corollary:

Corollary 3.2. Let Dk be a k-functional operator on S. Let ϕ : X2 −→ [0,∞)
with (14). Suppose that f : X −→ Y is a mapping satisfying f(0) = 0, and

N(f(x), t) ≥ N
( 1

ak
f(ax), t

)
for all x ∈ X and all t > 0, and

N(Dkf(x, y), t) ≥ N ′(ϕ(x, y), t) (19)

for all x, y ∈ X and all t > 0. Further, suppose that (19) implies that

N(akf(x)− f(ax),Mt) ≥ Φ(x, 0, t)

for all x ∈ X, all t > 0, and some positive real number M . Then there exists an
unique k-mapping F : X −→ Y such that N − limn→∞

1
akn f(a

n) = F (x) and

N
( 1

akn
f(anx), t

)
≥ N ′(F (x), t), f ≤s F,

N
(
F (x)− f(x),

ML

ak(1− L)
t
)
≥ Φ(x, 0, t)

(20)

for all x ∈ X, all t > 0, and all n ∈ N ∪ {0}.
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Proof. By Theorem 3.1, there is an unique mapping F ∈ S with (20). By (14)
and (19), we have

N
( 1

akn
Dkf(a

nx, any), t
)
≥ N ′

( 1

akn
ϕ(anx, any), t

)
≥ N ′

(
ϕ(x, y),

t

Ln

)
for all x, y ∈ X and all n ∈ N. Letting n → ∞ in the above inequality,
DkF (x, y) = 0 and so F is a k-mapping. □

Now, we will prove the generalized Hyers-Ulam stability of the following cubic
functional equation using Corollary 3.2.

f(3x+ y) + f(3x− y) = f(x+ 2y) + 2f(x− y) + 2f(3x)− 3f(x)− 6f(y) (21)

in fuzzy normed spaces as an application of our fixed point theorem. We can
easily shown that the following :

Theorem 3.3. Let f : X −→ Y be a mapping. Then f satisfies (21) if and
only if f is cubic.

For any mapping f : X −→ Y , let

D3f(x, y) = f(3x+y)+f(3x−y)−f(x+2y)−2f(x−y)−2f(3x)+3f(x)+6f(y).

By Corollary 3.2, we have the following example:

Example 3.4. Let X be a linear space. Let ϕ : X2 −→ Z be a function and L
a real number such that 0 < L < 1 and

N ′(ϕ(2x, 2y), t) ≥ N ′(23Lϕ(x, y), t) (22)

for all x, y ∈ X and all t > 0. Let f : X −→ Y be a mapping such that f(0) = 0
and

N(D3f(x, y), t) ≥ N ′(ϕ(x, y), t) (23)

for all x, y ∈ X and all t > 0. Further, suppose that

N(8f(x), t) ≥ N(f(2x), t)

for all x ∈ X and all t > 0. Then there exists an unique cubic mapping C :
X −→ Y such that

N
(
f(x)− C(x),

1

48(1− L)
t
)
≥ Φ(x, 0, t) (24)

for all x ∈ X and all t > 0, where

Φ(x, y, t) = min
{
N ′

(
ϕ(y,−x),

t

15

)
, N ′

(
ϕ(x, x),

t

15

)
,

N ′
(
ϕ(x,−x),

t

15

)
, N ′

(
ϕ(y, x),

t

15

)
, N ′

(
ϕ(y, 2x),

t

15

)}
.
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Proof. By (23), we have

N(6f(2x)− 48f(x), t)

= N(D3f(0,−x) + 2D3f(x, x)− 3Df(x,−x)− 8D3f(0, x)−D3f(0, 2x), t)

≥ min
{
N
(
D3f(0,−x),

t

15

)
, N

(
2D3f(x, x),

2t

15

)
, N

(
3D3f(x,−x),

3t

15

)
,

N
(
8D3f(0, x),

8t

15

)
, N

(
D3f(0, 2x),

t

15

)}
for all x ∈ X and all t > 0. Hence, by (N3), we have

N
(
23f(x)− f(2x),

t

6

)
≥ Φ(x, 0, t)

for all x ∈ X and all t > 0. By Corollary 3.2 and Theorem 3.3, there exists an
unique cubic mapping C in S with (24). □
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