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LIMIT CYCLES FOR A CLASS OF FIFTH-ORDER

DIFFERENTIAL EQUATIONS

ACHREF EDDINE TABET∗ AND AMAR MAKHLOUF

Abstract. The purpose of this research is to investigate sufficient condi-
tions for the existence of limit cycles of the fifth-order differential equation

x(5) + (p2 + q2)
...
x + p2q2

.
x = εF (t, x,

.
x,

..
x,

...
x,

....
x ),

where p, q are rational numbers different from 0, p ̸= ±q, ε is a small real
parameter, and F is a 2kπ-periodic function in the variable t. Also, we

provide some applications.
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1. Introduction and statement of the main results

One of the main problems in differential equation theory is the study of their
periodic orbits, their existence, their number, and their stability. A limit cycle
of a differential equation is a periodic orbit isolated from the set of all periodic
orbits of the differential equation.

In general, obtaining analytically periodic solutions to a differential system
is difficult, usually impossible. Here, using the averaging theory, we reduce
this difficult problem for the differential equation (4) to finding the zeros of a
nonlinear system of fifth equations. It is known that, in general, the averaging
theory for finding periodic solutions does not provide all the periodic solutions
for the system. To explain this idea, there are two main reasons. The first way
to look at the periodic solutions of a differential system is through the so-called
displacement function. The zeros of this function give us periodic solutions. This
displacement function, in general, is not global. Consequently, it cannot control
all the periodic solutions, only those in its domain of definition are hyperbolic.
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The second part is that the displacement function is expanded in the power
series of a small parameter ε. The averaging theory only controls the zeros
of the displacement function’s main term. When the dominant term is εk, we
discuss the averaging theory of order k. For more details, see [3, 7, 11].

The averaging theory is a classical tool for studying the dynamics of nonlinear
differential systems with periodic forcing, see [4, 8, 9, 12, 16, 17]. For a more
modern exposition of the averaging theory, see section 2 of this paper and the
book of Verhulst [19], Sanders and Verhulst [15].

In [5], the authors provide sufficient conditions for the existence of limit cycles
of the fourth-order differential equation

....
u + q

..
u+ pu = εF (t, u,

.
u,

..
u,

...
u), (1)

where p, q, ε are real parameters, and F is a nonlinear non-autonomous periodic
function with respect to the variable t.

In [2], the authors studied the limit cycles of the following fourth-order dif-
ferential equation

....
x + (1 + p2)

..
x+ p2x = εF (t, x,

.
x,

..
x,

...
x), (2)

where p is a rational different from −1, 0, 1, ε is a small real parameter, and F
is a non-autonomous periodic function in the variable t.

In [6], the authors studied the limit cycles of equation (2) in the case when
F = F (x,

.
x,

..
x,

...
x), which is an autonomous function.

In [13], the authors studied the limit cycles of the following class of fifth-order
differential equation

.....
x + α

....
x + (β + µ)

...
x + α(β + µ)

..
x+ βµ

.
x+ αβµx = εF (t, x,

.
x,

..
x,

...
x), (3)

where α, β, µ are rational numbers different from 0, such that α ̸= ±β, α ̸= ±µ,
and β ̸= ±µ with ε sufficiently small, and F is a non-autonomous periodic
function in the variable t.

In this article, we investigate the existence of limit cycles of the equation (3)
in the case when α is equal to 0, β = p2, and µ = q2. The new differential
equation becomes

x(5) + (p2 + q2)
...
x + q2p2

.
x = εF (t, x,

.
x,

..
x,

...
x,

....
x ), (4)

where p, q are rational numbers different from 0, and p ̸= ±q, ε is a small real
parameter, and F is a 2kπ–periodic function with respect to the first variable
t. This kind of differential equations appears frequently in many problems from
physics, chemistry, economics, engineering,...

There are various applications for fifth-order differential systems, such as
control theory and certain three-loop electric circuit problems (refer to Rosen-
vasser [14]). Additionally, numerous papers have been published on such systems
and equations, including [10,18,20,21].
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Our main result concerning the limit cycles of differential equation (4) is
presented in the following Theorem.

Theorem 1.1. Assume that p, q are rational numbers different from 0, and
p ̸= ±q, in the differential equation (4). We define

F1(X0, Y0, Z0, U0, V0) =
1

2kπ

∫ 2kπ

0
cos(pt)F (t, A(t), B(t), C(t), D(t), E(t)) dt,

F2(X0, Y0, Z0, U0, V0) = − 1
2kπ

∫ 2kπ

0
sin(pt)F (t, A(t), B(t), C(t), D(t), E(t)) dt,

F3(X0, Y0, Z0, U0, V0) =
1

2kπ

∫ 2kπ

0
cos(qt)F (t, A(t), B(t), C(t), D(t), E(t)) dt,

F4(X0, Y0, Z0, U0, V0) = − 1
2kπ

∫ 2kπ

0
sin(qt)F (t, A(t), B(t), C(t), D(t), E(t)) dt,

F5(X0, Y0, Z0, U0, V0) =
1

2kπ

∫ 2kπ

0
F (t, A(t), B(t), C(t), D(t), E(t)) dt,

(5)

with

A(t) =
X0 cos(pt)− Y0 sin(pt)

p2(p2 − q2)
+

U0 sin(qt)− Z0 cos(qt)

q2(p2 − q2)
+

V0

p2q2
,

B(t) = −Y0 cos(pt) +X0 sin(pt)

p(p2 − q2)
+

Z0 sin(qt) + U0 cos(qt)

q(p2 − q2)
,

C(t) = −X0 cos(pt)− Y0 sin(pt)

p2 − q2
+

U0 sin(qt)− Z0 cos(qt)

p2 − q2
,

D(t) = −Y0 cos(pt) +X0 sin(pt)

p2 − q2
− U0 cos(qt) + Z0 sin(qt)

p2 − q2
,

E(t) =
p2(X0 cos(pt)− Y0 sin(pt))

p2 − q2
+

q2(U0 sin(qt) + Z0 cos(qt))

p2 − q2
,

(6)

and p = p1
p2
, q = q1

q2
, where p1, p2, q1, q2 are integers numbers different form 0, and k

be the least common multiple of p2 and q2.

If F is 2kπ-periodic, then for every simple zero (X∗
0 , Y

∗
0 , Z∗

0 , U
∗
0 , V

∗
0 ) of the system

Fk = 0, with k = 1, 5, satisfying

det(
∂(F1,F2,F3,F4,F5)

∂(X0, Y0, Z0, U0, V0) |(X0,Y0,Z0,U0,V0)=(X∗
0 ,Y ∗

0 ,Z∗
0 ,U∗

0 ,V ∗
0 )

) ̸= 0, (7)

there exists a periodic solution x(t, ε) of equation (4) tending to the periodic solution
given by

x(t) =
X∗

0 cos(pt)− Y ∗
0 sin(pt)

p2(p2 − q2)
+

U∗
0 sin(qt)− Z∗

0 cos(qt)

q2(p2 − q2)
+

V ∗
0

p2q2
, (8)

of the equation

x(5) + (p2 + q2)
...
x + p2q2

.
x = 0,

when ε → 0. Note that this solution is periodic of period 2kπ.

Theorem 1.1 is proved in section 3. Its proof is based on the averaging theory
of the first order. See section 2. The following corollaries provide an example of
Theorem 1.1.

Corollary 1.2. Suppose that f(t, x,
.
x,

..
x,

...
x,

....
x ) = (ax2 + bx + c)(cos(t) + 3),

then the differential equation (4) with p = 3
4 , q = 1, a ̸= 0, and b2 ⩾ 4ac, has
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four periodic solutions xk(t, ε), with k = 1, 4 which tend to the periodic solutions
xk(t) given by (8) for (X∗

0 , Y
∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 ) as equal to

(0, 0, 0, 0,
−9b+

√
A1

32a
),

(0, 0, 0, 0,
−9b−

√
A1

32a
),

(0, 0,

√
A2

8a
, 0,

−1071b− 27
√
A2

3808a
),

(0, 0,−
√
A2

8a
, 0,

−1071b+ 27
√
A2

3808a
),

with A1 = −4ac+ b2, A2 =
−56644ac+ 14161b2

2253
, of the equation

x(5) +
25

16

...
x +

9

16

.
x = 0, (9)

when ε → 0. Note that these solutions are periodic of period 8π.

Corollary 1.3. Suppose that f(t, x,
.
x,

..
x,

...
x,

....
x ) = x−1+

.
x sin(t), then the differ-

ential system (4) with p = 1
3 , q = 2, has two periodic solutions xk(t, ε), with k =

1, 2 which tend to the periodic solutions xk(t) given by (8) for (X∗
0 , Y

∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 )

as equal to

(0, 0, 0, 0,
4

9
),

(0, 0, 0, 0,−4

9
),

of the equation

x(5) +
37

9

...
x +

4

9

.
x = 0, (10)

when ε → 0. Note that these solutions are periodic of period 6π.

2. Basic results on averaging theory

In this section, we present the basic result of the averaging theory that we
will use to demonstrate the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from dif-
ferential systems of the form

x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (11)

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 : R × Ω 7→ Rn

and F2 : R × Ω × (−ε0, ε0) 7→ Rn are C2 functions, T–periodic in the first
variable, and Ω is an open subset of Rn. One of the main assumption is that
the unperturbed system

x′ = F0(t,x), (12)

has a submanifold of periodic solutions.
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We express by x(t, z) the solution of system (12) such that x(0, z) = z. The
linearized system of the unperturbed system (12) along a periodic solution x(t, z)
is

y′ = DxF0(t,x(t, z))y, (13)

Let’s Mz(t) the fundamental matrix of the linear differential system (13) and
by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k coordinates, i.e,
ξ(x1, . . . , xn) = (x1, . . . , xk).

Consider V as an open and bounded set with Cl(V ) ⊂ Ω, such that for
each z ∈ Cl(V ). In this context x(t, z) represents the periodic solution of the
unperturbed system (12) with x(0, z). The set Cl(V ) is isochronous for the
system (11); i.e., it is a set formed only by periodic orbits, all of them having
the same period. The following result provides an answer to the problem of the
bifurcation of T–periodic solutions from the periodic solutions x(t, z) that are
contained in Cl(V ).

Theorem 2.1. We assume that there exists an open and bounded set V with
Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution x(t, z) is T–periodic, then
we consider the function F : Cl(V ) → Rn as

F(z) =
1

2π

∫ T

0

M−1
z (t, z)F1(t,x(t, z))dt. (14)

If there exists a ∈ V with F(a) = 0, and det ((dF/dz) (a)) ̸= 0, then there exists
a T–periodic solution x(t, ε) of system (11) such that x(0, ε) → a as ε → 0.

For a proof of Theorem 2.1, see Corollary 1 of [1].

3. PROOF OF THE RESULTS

Proof of Theorem 1.1. Introducing the variables y =
.
x, z =

..
x, u =

...
x, v =

....
x , The fifth-order differential equation (4) can be written as the following dif-
ferential system.

.
x = y,
.
y = z,
.
z = u,
.
u = v,
.
v = −(p2 + q2)u− p2q2y + εF (t, x, y, z, u, v).

(15)

As we can see, the unperturbed system of (15) has a single singular point at
the origin with eigenvalues ±ip, ±iq, and 0 for ε = 0. We’ll write system (15)
such that the linear part at the origin is in the real Jordan form. By using the
change of variables

X
Y
Z
U
V

 =


0 0 q2 0 1
0 pq2 0 p 0
0 0 p2 0 1
0 p2q 0 q 0

p2q2 0 p2 + q2 0 1




x
y
z
u
v

 , (16)
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we obtain the following system

.

X = −pY + εG(t,X, Y, Z, U, V ),
.

Y = pX,
.

Z = −qU + εG(t,X, Y, Z, U, V ),
.

U = qZ,
.

V = εG(t,X, Y, Z, U, V ),

(17)

where G(t,X, Y, Z, U, V ) = F (t, A(t), D(t), C(t), D(t), E(t)), and A(t), B(t),
C(t), D(t), E(t) given in (6).

Note that the linear part of the differential system (17) at the origin is in its
real normal jordan form and the change of variables (16) is defined when p ̸= ±q,
because the determinant of the matrix of the change is p3q3(p2−q2)2. Now we’ll
apply Theorem 2.1 to the differential system (17), taking

ẋ =


X
Y
Z
U
V

, F0(t,x) =


−pY
pX
−qU
qZ
0

, F1(t,x) =


G(t,X, Y, Z, U, V )

0
G(t,X, Y, Z, U, V )

0
G(t,X, Y, Z, U, V )

 .

We can see that the system (17) has an isochronous linear center at the origin
with ε = 0. Using the notation of Theorem 2.1, the periodic solution x(t, z) of
this center with z = (X0, Y0, Z0, U0, V0) is

X
Y
Z
U
V

 =


X0 cos(pt)− Y0 sin(pt)
Y0 cos(pt) +X0 sin(pt)
Z0 cos(qt)− U0 sin(qt)
U0 cos(qt) + Z0 cos(qt)

V0

 . (18)

This set of periodic orbits has the fifth dimension, and all have the same
period 2kπ. We must compute the zeros α = (X∗

0 , Y
∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 ) of the system

F(α) = 0, where F(α) is given by (14) as well as the fundamental matrix M(t)
of the differential system (17) with ε = 0, along any periodic solution is

M(t) =


cos(pt) − sin(pt) 0 0 0
sin(pt) cos(pt) 0 0 0

0 0 cos(qt) − sin(qt) 0
0 0 sin(qt) cos(qt) 0
0 0 0 0 1

 .

The inverse matrix of M(t) is

M−1(t) =


cos(pt) sin(pt) 0 0 0
− sin(pt) cos(pt) 0 0 0

0 0 cos(qt) sin(qt) 0
0 0 − sin(qt) cos(qt) 0
0 0 0 0 1

 .



Limit cycles for a class of fifth-order differential equations 145

Now computing the function F(α) given in (14), we got that the system
F(α) = 0, can be written as


F1(X0, Y0, Z0, U0, V0) = 0,
F2(X0, Y0, Z0, U0, V0) = 0,
F3(X0, Y0, Z0, U0, V0) = 0,
F4(X0, Y0, Z0, U0, V0) = 0,
F5(X0, Y0, Z0, U0, V0) = 0,

(19)

where Fk(X0, Y0, Z0, U0, V0) for k = 1, 5, are given in (5).

Then, the zeros (X∗
0 , Y

∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 ) of the system (19) with respect to the

variables X0, Y0, Z0, U0, and V0 provide periodic orbits of the system (17) with
ε ̸= 0 sufficiently small if they are simple i.e if

det(
∂(F1,F2,F3,F4,F5)

∂(X0, Y0, Z0, U0, V0) |(X0,Y0,Z0,U0,V0)=(X∗
0 ,Y

∗
0 ,Z∗

0 ,U
∗
0 ,V

∗
0 )

) ̸= 0.

Going back through the change of variables, for every simple zero (X∗
0 , Y

∗
0 ,

Z∗
0 , U

∗
0 , V

∗
0 ) of the system (19), we obtain 2kπ–periodic solutions x(t, ε) of dif-

ferential equation (4), for ε ̸= 0 sufficiently small such that x(t, ε) tends to the
periodic solution

x(t) =
X∗

0 cos(pt)− Y ∗
0 sin(pt)

p2(p2 − q2)
+

U∗
0 sin(qt)− Z∗

0 cos(qt)

q2(p2 − q2)
+

V ∗
0

p2q2
,

of x(5) + (p2 + q2)
...
x + p2q2

.
x = 0 when ε → 0. Note that this solution is periodic

of period 2kπ. This completes the proof of the Theorem 1.1. □

Proof of corollary 1.2. We have the equation

x(5) +
25

16

...
x +

9

16

.
x = ε((ax2 + bx+ c)(cos(t) + 3)), (20)

which corresponds to the case p =
3

4
, q = 1, and F (t, x,

.
x,

..
x,

...
x,

....
x ) = (ax2 +

bx+ c)(cos(t) + 3).
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The functions Fk(X0, Y0, Z0, U0, V0) for k = 1, 5 of Theorem 1.1 are

F1(X0, Y0, Z0, U0, V0) = − 128

1323
X0(224V0 + 48Z0)a− 128

21
X0b,

F2(X0, Y0, Z0, U0, V0) = − 128

1323
Y0(224V0 + 48Z0)a− 128

21
Y0b,

F3(X0, Y0, Z0, U0, V0) = (
16384

3969
X2

0 +
16384

3969
Y 2
0 +

96

49
Z2
0 +

32

49
U2
0 +

128

81
V 2
0

+
256

21
Z0V0)a+ (

24

7
Z0 +

8

9
V0)b+

1

2
c,

F4(X0, Y0, Z0, U0, V0) =
8

147
U0(224V0 + 48Z0)a+

24

7
U0b,

F5(X0, Y0, Z0, U0, V0) = (
32768

1323
X2

0 +
32768

1323
Y 2
0 +

384

49
Z2
0 +

384

49
U2
0 +

256

27
V 2
0

+
256

63
Z0V0)a+ (

8

7
Z0 +

16

3
V0)b+ 3c.

The system F1 = F2 = F3 = F4 = F5 = 0, has four real solutions given by

(0, 0, 0, 0,
−9b+ 9

√
A1

32a
), (0, 0, 0, 0,

−9b− 9
√
A1

32a
),

(0, 0,

√
A2

8a
, 0,

−1071b− 27
√
A2

3808a
), (0, 0,−

√
A2

8a
, 0,

−1071b+ 27
√
A2

3808a
).

Since the Jacobians (7) for these solutions (X∗
0 , Y

∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 ) are

±142606336

64827
(−4ac+ b2)5/2, ∓ 713031680000

8884685756961

√
−9012ac+ 2253b2(4ac− b2)2.

By Theorem 1.1, equation (20) has four periodic solutions, tending to the
periodic solutions of equation (9) given in the statement of Corollary 1.2. □

Proof of corollary 1.3. We have the equation

x(5) +
37

9
x(3) +

4

9

.
x = ε(x2 − 1 +

...
x sin(t)), (21)

which corresponds to the case p = 1
3 , q = 2, and F (t, x,

.
x,

..
x,

...
x,

....
x ) = x2 − 1 +

...
x sin(t). The functions Fk(X0, Y0, Z0, U0, V0) for k = 1, 5 of Theorem 1.1 are

F1(X0, Y0, Z0, U0, V0) = −729

140
X0V0,

F2(X0, Y0, Z0, U0, V0) = −729

140
Y0V0,

F3(X0, Y0, Z0, U0, V0) =
81

560
Z0V0,

F4(X0, Y0, Z0, U0, V0) =
81

560
U0V0,

F5(X0, Y0, Z0, U0, V0) =
6561

2450
X2

0 +
6561

2450
Y 2
0 +

81

39200
Z2
0 +

81

39200
U2
0 +

81

16
V 2
0 − 1.
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The system F1 = F2 = F3 = F4 = F5 = 0, has two real solutions given by

(0, 0, 0, 0,
4

9
), (0, 0, 0, 0,−4

9
).

Since the Jacobians (7) for these solutions (X∗
0 , Y

∗
0 , Z

∗
0 , U

∗
0 , V

∗
0 ) are±

4782969

48020000
.

By Theorem 1.1, equation (21) has two periodic solutions, tending to the
periodic solutions of equation (10) given in the statement of Corollary 1.3.

□
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