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ON FUZZY β-VOLTERRA SPACES
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Abstract. The purpose of this paper is to introduce and study the new
class of spaces called the fuzzy β-Volterra spaces with the help of fuzzy

β-dense and fuzzy β-Gδ sets. Examples are given to illustrate the

concept. Some interesting characterizations of the fuzzy β-Volterra spaces
are established in this paper.
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1. Introduction

Fuzzy sets were introduced by L.A.Zadeh [11] in 1965 from his remarkable
paper. The theory of topological spaces in fuzzy setting was introduced and
studied by C.L.Chang [7] in 1968. M.E.Abd El-Monsef [1] introduced the
notion of β-open sets in 1983 and also developed by A.A.Allam et al.[2] in
1989. G.Balasubramanian [5] introduced the notion of fuzzy β-open sets in
1997. G.Thangaraj and S.Soundara Rajan [10] introduced the concept of
Volterra spaces in fuzzy setting. The main aim of this paper is to introduce
and study the notion of the β-Volterra spaces in fuzzy setting.

2. Preliminaries

We give some basic notions and results used in the sequel.

Definition 2.1. [7] A fuzzy topology is a family ‘T ’ of fuzzy sets in X which
satisfies the following conditions:

(1) Φ, X ∈ T ,
(2) If A,B ∈ T , then A ∩B ∈ T ,
(3) If Ai ∈ T for each i, then ∪Ai ∈ T .
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T is called a fuzzy topology for X and the pair (X,T ) is a fts or fts in short.
Every member of T is called a fuzzy open set or fo set in short. A fuzzy set is a
fuzzy closed set or fc set in short if and only if its complement is fo set.

Lemma 2.2. [3] For a family A = {λα} of fuzzy sets of a fuzzy space X,
Then, ∨ cl(λα) ≤ cl(∨λα). In case A is a finite set, ∨ cl(λα) = cl(∨λα). Also
∨ int (λα) ≤ int(∨λα).

Definition 2.3. [4] A fuzzy set λ in a fts (X,T ) is called a fuzzy Gδ-set or
fGδ-set in short if λ = ∧∞

i=1(λi), where (λi)’s are fo sets.

Definition 2.4. [4] A fuzzy set λ in a fts (X,T ) is called a fuzzy Fσ-set or
fFσ-set in short if λ = ∨∞

i=1(λi), where (λi)’s are fc sets.

Definition 2.5. [8] A fuzzy set λ in a fts (X,T ) is called a fuzzy dense set or
fd set in short if there exists no fc set µ such that λ < µ < 1. That is, cl(λ) = 1.

Definition 2.6. [10] A fts (X,T ) is said to be a fuzzy Volterra space or fVs in
short if cl

(
∧N
i=1(λi)

)
= 1, where (λi)’s are fd and fGδ-sets.

Definition 2.7. [5] A fuzzy set λ in a fts (X,T ) is called a fuzzy β-open set or
fβ-o set in short if λ ≤ clintcl(λ).

Definition 2.8. [5] A fuzzy set λ in a fts (X,T ) is called a fuzzy β-closed set
or fβ-c set in short if intclint(λ) ≤ λ.

Definition 2.9. [5] Let λ be a fuzzy set in the fts (X,T ). Then we define the
fuzzy β-closure and the fuzzy β-interior of λ respectively as follows:

β-cl(λ) = ∧{µ | µ is a fβ − c set and µ ≥ λ};
β-int(λ) = ∨{µ | µ is a fβ − o set and µ ≤ λ}.

Lemma 2.10. [5] Let λ be any fuzzy set in the fts (X,T ). Then
β-cl(1− λ) = 1− β-int(λ) and
β-int(1− λ) = 1− β-cl(λ).

Theorem 2.11. [6] In a fts (X,T ), the following are valid:

(a). λ is fβ-o ⇔ β-int(λ) = λ;
(b). λ is fβ-c ⇔ β-cl(λ) = λ.

Theorem 2.12. [6] In a fts (X,T ), the following hold for fuzzy β-closure. For
any two fuzzy sets λ and µ:

(a). β-cl(0) = 0.
(b). β-cl(λ) is a fuzzy β-closed.
(c). β-cl(λ) ≤ β − cl(µ) if λ ≤ µ.
(d). β − cl(β − cl(λ)) = β − cl(λ).
(e). β − cl(λ ∨ µ) ≥ β − cl(λ) ∨ β − cl(µ).
(f). β − cl(λ ∧ µ) ≤ β − cl(λ) ∧ β − cl(µ).

Similar results hold for fuzzy β-interiors.
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3. Fuzzy β-Gδ sets and fuzzy β-Fσ sets

Definition 3.1. A fuzzy set λ in a fuzzy topological space (X,T ) is called a
fuzzy β-Gδ set or fβ-Gδ set in short if λ = ∧∞

i=1(λi), where (λi)’s are fβ-o sets.

Definition 3.2. A fuzzy set λ in a fuzzy topological space (X,T ) is called a
fuzzy β-Fσ set or fβ-Fσ set in short if λ = ∨∞

i=1(λi), where (λi)’s are fβ-c sets.

Proposition 3.3. A fuzzy set λ is a fβ-o set in a fts (X,T ) if and only if 1−λ
is a fβ-c set.

Proof. Let λ be a fβ-o set. Then λ ≤ clintcl(λ). Then intclint(1 − λ) =
1− clintcl(λ) ≤ 1− λ. This implies that 1− λ is a fβ-c set.

Conversely, let λ be a fβ-c set. intclint(λ) ≤ λ. Then clintcl(1 − λ) =
1− intclint(λ) ≥ 1−λ. That is, 1−λ ≤ clintcl(1−λ) and hence 1−λ is a fβ-o
set. □

Proposition 3.4. If λ is a fGδ-set in a fts (X,T ), then λ is a fβ-Gδ set.

Proof. Let λ be a fGδ-set. Then λ = ∧∞
i=1(λi), where (λi)’s are fo sets. Since

fo sets (λi)’s are fβ-o sets. Thus, λ = ∧∞
i=1(λi), where (λi)’s are fβ-o sets and

hence λ is a fβ-Gδ set. □

Proposition 3.5. If λ is a fFσ-set in a fts (X,T ), then λ is a fβ-Fσ set.

Proof. Let λ be a fFσ-set. Then λ = ∨∞
i=1(λi), where (λi)’s are fc sets. Since

fc sets (λi)’s are fβ-c sets. Thus, λ = ∨∞
i=1(λi), where (λi)’s are fβ-c sets and

hence λ is a fβ-Fσ set. □

Proposition 3.6. A fuzzy set λ is a fβ-Gδ set in a fts (X,T ) if and only if
1− λ is a fβ-Fσ set.

Proof. Let λ be a fβ-Gδ set. Then by the Definition 3.1, λ = ∧∞
i=1(λi), where

(λi)’s are fβ-o sets. Since (λi)’s are fβ-o sets and by the Proposition 3.3, (1−λi)’s
are fβ-c sets. Now 1 − λ = 1 − ∧∞

i=1(λi) = ∨∞
i=1(1 − λi). So by the Definition

3.2, 1− λ is a fβ-Fσ set.
Conversely, let λ be a fβ-Fσ set. Then by the Definition 3.2, λ = ∨∞

i=1(λi),
where (λi)’s are fβ-c sets. Since (λi)’s are fβ-c sets and by the Proposition 3.3,
(λi)’s are fβ-o sets. Now 1 − λ = 1 − ∨∞

i=1(λi) = ∧∞
i=1(1 − λi). So by the

Definition 3.1, 1− λ is a fβ-Gδ set. □

4. Fuzzy β-dense sets and fuzzy β-nowhere dense sets

Definition 4.1. [9] A fuzzy set λ in a fts (X,T ) is called a fuzzy β-dense set
or fβ-d set in short if there exists no fβ-c set µ such that λ < µ < 1. That is,
β-cl(λ) = 1.

Definition 4.2. [9] Let (X,T ) be a fts. A fuzzy set λ in (X,T ) is called a fuzzy
β-nowhere dense set or fβ-nd set in short if there exists no non zero fβ-o set µ
such that µ < β-cl(λ). That is, β-intβ-cl(λ) = 0.
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Proposition 4.3. If λ = ∨∞
i=1(λi), where (1−λi)’s are fβ-o sets, is a fβ-nd set

in a fts (X,T ), then (λi)’s are fβ-nd sets.

Proof. Let λ = ∨∞
i=1(λi), where (1 − λi)’s are fβ-o sets. Then

β-cl(λ) = β-cl (∨∞
i=1(λi)) ≥ ∨∞

i=1(β-cl(λi)). Since (1− λi)’s are fβ-o sets and by
the Proposition 3.3, (1− (1− λi))’s are fβ-c sets and then
β-cl(λi) = λi −→ (1) and hence β-cl(λ) ≥ ∨∞

i=1(λi). Then
β-int β-cl(λ) ≥ β-int (∨∞

i=1(λi)) ≥ ∨∞
i=1(β-int(λi)). Since λ is a fβ-nd set,

β-int β-cl(λ) = 0. Thus 0 ≥ ∨∞
i=1(β-int(λi)). That is, ∨∞

i=1(β-int(λi)) = 0 and
hence β-int(λi) = 0 for each i. Now, β-int β-cl(λi) = β-int(λi) = 0 [from (1)].
Hence (λi)’s are fβ-nd sets. □

Theorem 4.4. [9] If λ is a fβ-nd set in a fts (X,T ), then 1− λ is a fβ-d set.

Theorem 4.5. [9] If λ is a fβ-d set in a fts (X,T ), then λ is a fβ-o set.

Proposition 4.6. If λ is a fβ-nd set in a fts (X,T ), then λ is a fβ-c set.

Proof. Let λ is a fβ-nd set. Then by the Theorem 4.4, 1− λ is a fβ-d set. Then
by the Theorem 4.5, the fβ-d set 1−λ is a fβ-o set and hence λ is a fβ-c set. □

5. Fuzzy β-first category sets and fuzzy β-residual sets

Definition 5.1. [9] A fuzzy set λ in a fts (X,T ) is called a fuzzy β-first category
set or fβ-fc set in short if λ = ∨∞

i=1(λi), where (λi)’s are fβ-nd sets. Any other
fuzzy set is said to be of fβ-sc.

Definition 5.2. [9] Let λ be a fβ-fc set in a fts (X,T ). Then 1 − λ is called a
fuzzy β-residual set or fβ-r set in short.

Proposition 5.3. If λ is a fβ-d and fβ-Gδ set in a fts (X,T ), then 1 − λ is a
fβ-fc set.

Proof. Let λ be a fβ-d and fβ-Gδ set. Then β-cl(λ) = 1 and λ = ∧∞
i=1(λi), where

(λi)’s are fβ-o sets. This implies that β-cl (∧∞
i=1(λi)) = 1. But β-cl (∧∞

i=1(λi)) ≤
∧∞
i=1(β-cl(λi)). This implies that 1 ≤ ∧∞

i=1(β-cl(λi)). That is, ∧∞
i=1(β-cl(λi)) = 1

and hence β-cl(λi) = 1. Since (λi)’s are fβ-o sets, β-int(λi) = λi and therefore
β-cl β-int(λi) = 1. Now 1−β-cl β-int(λi) = 0, implies that β-int β-cl(1−λi) = 0.
Thus (1−λi)’s are fβ-nd sets. Then 1−λ = 1−∧∞

i=1(λi) = ∨∞
i=1(1−λi). So by

the Definition 5.1, 1− λ is a fβ-fc set. □

In view of the above Proposition 4.3, one will have the following Proposition:

Proposition 5.4. If a fβ-nd set λ in a fts (X,T ) is a fβ-Fσ set, then λ is a
fβ-fc set.

Proof. Let λ be a fβ-nd set such that λ = ∨∞
i=1(λi), where (1 − λi)’s are fβ-o

sets. Since λ is a fβ-nd set and by the Proposition 4.3, (λi)’s are fβ-nd sets.
Then λ = ∨∞

i=1(λi), where (λi)’s are fβ-nd sets, implies that λ is a fβ-fc set. □
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Proposition 5.5. If β-int(λ) = 0 for a fβ-Fσ set λ in a fts (X,T ), then λ is a
fβ-fc set.

Proof. Let λ be a fβ-Fσ set such that β-int(λ) = 0. Then λ = ∨∞
i=1(λi), where

(λi)’s are fβ-c sets. This implies that 0 = β-int(λ) = β-int(∨∞
i=1(λi)). But

∨∞
i=1(β-int(λi)) ≤ β-int(∨∞

i=1(λi)) = 0 ∨∞
i=1(β-int(λi)) ≤ 0. That is,

∨∞
i=1(β-int(λi)) = 0 and then β-int(λi) = 0 for each i. Since (λi)’s are fβ-c sets

and by the Theorem 2.11, β-cl(λi) = λi. Now β-int β-cl(λi) = β-int(λi) = 0
and then by the Definition 4.2, (λi)’s are fβ-nd sets. Thus, λ = ∨∞

i=1(λi), where
(λi)’s are fβ-nd sets. So by the Definition 5.1, λ is a fβ-fc set. □

Proposition 5.6. If a fβ-Gδ set λ is a fβ-d set in a fts (X,T ), then λ is a fβ-r
set.

Proof. Let λ be a fβ-Gδ set with β-cl(λ) = 1. Then by the Proposition 3.6,
1 − λ is a fβ-Fσ set with 1 − β-cl(λ) = 0. That is, 1 − λ is a fβ-Fσ set with
β-int(1 − λ) = 0. Then by the Proposition 5.5, 1 − λ is a fβ-fc set. So by the
Definition 5.2, λ is a fβ-r set. □

6. Fuzzy β-Volterra spaces

Definition 6.1. A fts (X,T ) is called a fuzzy β-Volterra space or fβ-Vs in short
if β-cl

(
∧N
i=1(λi)

)
= 1, where the fuzzy sets (λi)’s are fuzzy β-dense and fuzzy

β-Gδ sets.

Example 6.2. Let X = {a, b, c}. The fuzzy sets λ1, λ2 and λ3 are defined on
X as follows:

λ1 : X → [0, 1] is defined as λ1(a) = 0.8; λ1(b) = 0.6; λ1(c) = 0.7,
λ2 : X → [0, 1] is defined as λ2(a) = 0.6; λ2(b) = 0.9; λ2(c) = 0.8,
λ3 : X → [0, 1] is defined as λ3(a) = 0.7; λ3(b) = 0.5; λ3(c) = 0.9.
Clearly T = {0, λ1, λ2, λ3, λ1∨λ2, λ1∨λ3, λ2∨λ3, λ1∧λ2, λ1∧λ3, λ2∧λ3, λ1∨

(λ2 ∧ λ3), λ1 ∧ (λ2 ∨ λ3), λ2 ∨ (λ1 ∧ λ3), λ2 ∧ (λ1 ∨ λ3), λ3 ∨ (λ1 ∧ λ2), λ3 ∧ (λ1 ∨
λ2), λ1 ∨ λ2 ∨ λ3, 1} is a fuzzy topology on X.

Now consider fuzzy sets
µ1 = {λ2 ∧ (λ1 ∨ λ2) ∧ (λ2 ∧ λ3) ∧ [λ2 ∨ (λ1 ∧ λ3)] ∧ [λ3 ∧ (λ1 ∨ λ2)] ∧ [λ2 ∧

(λ1 ∨ λ3)] ∧ [λ1 ∨ (λ2 ∧ λ3)]}
µ2 = {λ1 ∧ (λ1 ∧ λ2) ∧ (λ1 ∧ λ3) ∧ [λ1 ∧ (λ2 ∨ λ3)]} and
µ3 = {λ3 ∧ (λ2 ∨ λ3) ∧ (λ1 ∨ λ3) ∧ [λ1 ∨ (λ2 ∧ λ3)] ∧ [λ3 ∨ (λ1 ∧ λ2)]}.
Then µ1, µ2 and µ3 are fGδ-sets and hence are fβ-Gδ sets. On computations,

one can see that β-cl(µ1) = 1, β-cl(µ2) = 1 and β-cl(µ3) = 1. Hence µ1, µ2 and
µ3 are fβ-d sets. This implies that β-cl(µ1 ∧ µ2 ∧ µ3) = 1, where µ1, µ2, µ3 are
fβ-d and fβ-Gδ sets. So, the fts (X,T ) is a fβ-Vs.

Example 6.3. Let X = {a, b, c}. The fuzzy sets λ1, λ2 and λ3 are defined on
X as follows:

λ1 : X → [0, 1] is defined as λ1(a) = 0.4; λ1(b) = 0.5; λ1(c) = 0.6,
λ2 : X → [0, 1] is defined as λ2(a) = 0.6; λ2(b) = 0.4; λ2(c) = 0.5,
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λ3 : X → [0, 1] is defined as λ3(a) = 0.7; λ3(b) = 0.6; λ3(c) = 0.4.
Then, T = {0, λ1, λ2, λ3, λ1 ∨λ2, λ1 ∨λ3, λ2 ∨λ3, λ1 ∧λ2, λ1 ∧λ3, λ2 ∧λ3, λ1 ∧

(λ2 ∨ λ3), λ2 ∨ (λ1 ∧ λ3), λ3 ∧ (λ1 ∨ λ2), 1} is a fuzzy topology on X. Now there
is no fβ-d and fβ-Gδ set such that cl

(
∧N
i=1(λi)

)
= 1 and therefore the fts (X,T )

is not a fβ-Vs.

7. Characterizations of fuzzy β-Volterra spaces

The following Propositions give conditions for the fuzzy topological spaces to
be the fuzzy β-Volterra spaces.

Proposition 7.1. If β-int
(
∨N
i=1(λi)

)
= 0, where (λi)’s are fβ-nd and fβ-Fσ

sets in a fts (X,T ), then (X,T ) is a fβ-Vs.

Proof. Let β-int
(
∨N
i=1(λi)

)
= 0. Then 1 − β-int

(
∨N
i=1(λi)

)
= 1. This implies

that β-cl
(
∧N
i=1(1− λi)

)
= 1. Since (λi)’s are fβ-nd sets and by the Theorem 4.4,

(1− λi)’s are fβ-d sets. Also since (λi)’s are fβ-Fσ-sets and by the Proposition
3.6, (1 − λi)’s are fβ-Gδ sets. Hence, β-cl

(
∧N
i=1(1− λi)

)
= 1, where (1 − λi)’s

are fβ-d and fβ-Gδ sets. So by the Definition 6.1, (X,T ) is a fβ-Vs. □

Proposition 7.2. A fts (X,T ) is a fβ-Vs if and only if β-int
(
∨N
i=1(1− λi)

)
= 0,

where (λi)’s are fβ-d and fβ-Gδ sets.

Proof. Let (X,T ) be a fβ-Vs. Then by the Definition 6.1, β-cl
(
∧N
i=1(λi)

)
= 1

where (λi)’s are fβ-d and fβ-Gδ sets. Now
β-int

(
∨N
i=1(1− λi)

)
= 1 − β-cl

(
∧N
i=1(λi)

)
= 1 − 1 = 0. Thus,

β-int
(
∨N
i=1(1− λi)

)
= 0, where (λi)’s are fβ-d and fβ-Gδ sets.

Conversely, let β-int
(
∨N
i=1(1− λi)

)
= 0 where (λi)’s are fβ-d and fβ-Gδ sets.

Then 1− β-cl
(
∧N
i=1(λi)

)
= 0. This implies that β-cl

(
∧N
i=1(λi)

)
= 1. Therefore

β-cl
(
∧N
i=1(λi)

)
= 1, where (λi)’s are fβ-d and fβ-Gδ sets. So by the Definition

6.1, (X,T ) is a fβ-Vs. □

Proposition 7.3. If the fuzzy sets (µi)’s, (i = 1 to N) are fβ-fc sets formed
from the fβ-d and fβ-Gδ sets in a fβ-Vs (X,T ), then β-int

(
∨N
i=1(µi)

)
= 0.

Proof. Let (λi)’s be the fβ-d and fβ-Gδ sets. Then β-cl
(
∧N
i=1(λi)

)
= 1. Now

1 − β-cl
(
∧N
i=1(λi)

)
= 0. This implies that β-int

(
∨N
i=1(1− λi)

)
= 0. Since the

fuzzy sets (λi)’s are fβ-d and fβ-Gδ sets and by the Proposition 5.3, (1 − λi)’s
are fβ-fc sets. Let µi = 1 − λi. Hence β-int

(
∨N
i=1(µi)

)
= 0, where (µi)’s are

fβ-fc sets. □

Proposition 7.4. If λ = ∧N
i=1(λi), where (λi)’s are fβ-d and fβ-Gδ sets in a

fβ-Vs (X,T ), then λ is not a fβ-c set.

Proof. Let λ = ∧N
i=1(λi), where (λi)’s are fβ-d and fβ-Gδ sets. Since (X,T ) is

a fβ-Vs, β-cl(∧N
i=1(λi)) = 1. That is, β-cl(λ) = 1 ̸= λ. Thus, λ is not a fβ-c

set. □
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Proposition 7.5. If µ = ∨N
i=1(µi), where (µi)’s are fβ-nd and fβ-Fσ sets in a

fβ-Vs (X,T ), then µ is not a fβ-o set.

Proof. Let µ = ∨N
i=1(µi), where (µi)’s are fβ-nd and fβ-Fσ sets. Then 1 − µ =

1−∨N
i=1(µi) = ∧N

i=1(1−µi). Since (µi)’s are fβ-nd sets and by the Theorem 4.4,
(1− µi)’s are fβ-d sets. Also since (µi)’s are fβ-Fσ sets and by the Proposition
3.6, (1− µi)’s are fβ-Gδ sets. Hence 1− µ = ∧N

i=1(1− µi), where (1− µi)’s are
fβ-d and fβ-Gδ sets. Then by the Proposition 7.4, 1− µ is not a fβ-c set. So, µ
is not a fβ-o set. □

Proposition 7.6. If β-int
(
∨N
i=1(1− λi)

)
= 0, where (λi)’s are fβ-Gδ sets in a

fts (X,T ), then (X,T ) is a fβ-Vs.

Proof. Let (λi)’s be the fβ-Gδ sets such that β-int
(
∨N
i=1(1− λi)

)
= 0. But

∨N
i=1(β-int(1−λi)) ≤ β-int

(
∨N
i=1(1− λi)

)
. Then ∨N

i=1(β-int(1−λi)) ≤ 0. That

is, ∨N
i=1(β-int(1 − λi)) = 0. This implies that β-int(1 − λi) = 0, (i = 1 to N).

Thus 1 − β-cl(λi) = 0 and hence β-cl(λi) = 1. Therefore, (λi)’s are fβ-d sets.
Since β-int

(
∨N
i=1(1− λi)

)
= 0, 1−β-cl

(
∧N
i=1(λi)

)
= 0. Thus, β-cl

(
∧N
i=1(λi)

)
=

1, where (λi)’s are fβ-d and fβ-Gδ sets. So by the Definition 6.1, (X,T ) is a
fβ-Vs. □

Proposition 7.7. If β-cl
(
∧N
i=1(λi)

)
= 1, where (λi)’s are fβ-Gδ sets in a fts

(X,T ), then (X,T ) is a fβ-Vs.

Proof. Let (λi)’s be the fβ-Gδ sets such that β-cl
(
∧N
i=1(λi)

)
= 1. Then 1 −

β-cl
(
∧N
i=1(λi)

)
= 0. This implies that β-int

(
∨N
i=1(1− λi

)
= 0. Then by the

Proposition 7.6, (X,T ) is a fβ-Vs. □

Proposition 7.8. If a fts (X,T ) is a fβ-Vs, then there exists a fβ-Fσ set µ such
that β-int(µ) ̸= 0.

Proof. Let λ = ∧N
i=1(λi), where (λi)’s are fβ-d and fβ-Gδ sets. Since (X,T ) is a

fβ-Vs, β-cl(λ) = β-cl
(
∧N
i=1(λi)

)
= 1. Then β-cl(λ) = 1 → (1). Now 1−β-int(λi)

is a fβ-c set. Let µ = ∨∞
i=1(µi), where (µi)’s are fβ-c sets in which the first N fβ-c

sets as 1−β-int(λi). Then µ is a fβ-Fσ set. But ∨N
i=1(1−β-int(λi)) ≤ ∨∞

i=1(µi).
Then 1−∧N

i=1(β-int(λi)) ≤ ∨∞
i=1(µi). Now 1−∧N

i=1(λi) < 1−∧N
i=1(β-int(λi)) ≤

∨∞
i=1(µi). Then 1 − λ < 1 − ∧N

i=1(β-int(λi)) < µ. That is, 1 − λ < µ. This
implies that β-int(1 − λ) < β-int(µ). Then 1 − β-cl(λ) < β-int(µ). From (1),
1− 1 < β-int(µ) and hence β-int(µ) > 0. That is, β-int(µ) ̸= 0. Hence if (X,T )
is a fβ-Vs, then there exists a fβ-Fσ set µ such that β-int(µ) ̸= 0. □

Proposition 7.9. If each fβ-Gδ set has a fβ-d interior in a fts (X,T ), then
(X,T ) is a fβ-Vs.

Proof. Let (λi)’s be fβ-d and fβ-Gδ sets. Then λ = ∧N
i=1(λi) is a fβ-Gδ set. By

hypothesis, λ has a fβ-d interior and hence β-cl β-int(λ) = 1. Now β-int(λ) ≤
λ, implies that β-int(λ) ≤ ∧N

i=1(λi). Then β-cl β-int(λ) ≤ β-cl
(
∧N
i=1(λi)

)
.

This implies that 1 ≤ β-cl
(
∧N
i=1(λi)

)
. Thus β-cl

(
∧N
i=1(λi)

)
≥ 1. That is,
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β-cl
(
∧N
i=1(λi)

)
= 1, where (λi)’s are fβ-d and fβ-Gδ sets. So by the Definition

6.1, (X,T ) is a fβ-Vs. □

Remark 7.1. A fβ-d set in a fts (X,T ) is a fd set since β-cl(λ) ≤ cl(λ), but the
converse need not be true. That is, a fd set need not be a fβ-d set. For consider
the following example:

Example 7.10. LetX = {a, b, c}. Then the fuzzy sets α1, α2 and α3 are defined
on X as follows:

α : X → [0, 1] defined as α1(a) = 0.5, α1(b) = 0.4, α1(c) = 0.6;
α2 : X → [0, 1] defined as α2(a) = 0.6, α2(b) = 0.5, α2(c) = 0.7;
α3 : X → [0, 1] defined as α3(a) = 0.3, α3(b) = 0.1, α3(c) = 0.7.
Clearly T = {0, α1, α2, 1} is a fuzzy topology on X. By computations, one

can see that cl(α3) = 1 and β-cl(α3) = α3 ̸= 1 and α3 is a fd set and not a fβ-d
set.

Proposition 7.11. If a fts (X,T ) is a fVs, then (X,T ) is not a fβ-Vs.

Proof. Let (X,T ) be a fVs. Then cl
(
∧N
i=1(λi)

)
= 1, where (λi)’s are fd and

fGδ-sets. Since (λi)’s are fGδ-sets and by the Proposition 3.4, (λi)’s are fβ-Gδ

sets. But by the Remark 7.1 and by the Example 7.10, the fd sets (λi)’s are not
the fβ-d sets. So by the Definition 6.1, (X,T ) is not a fβ-Vs. □

Proposition 7.12. If a fts (X,T ) is a fβ-Vs, then (X,T ) is not a fVs.

Proof. Let (X,T ) be a fβ-Vs. Then β-cl
(
∧N
i=1(λi)

)
= 1, where (λi)’s are fβ-d

and fβ-Gδ sets. Since (λi)’s are fβ-d sets and by the Remark 7.1 and by the
Example 7.10, (λi)’s are fd sets. But the fβ-Gδ sets (λi)’s are not the fGδ-sets.
So by the Definition 2.6, (X,T ) is not a fVs. □

Remark 7.2. From the above Propositions 7.11 and 7.12, one can conclude
that fuzzy Volterra spaces and fuzzy β-Volterra spaces are independent.

8. Conclusion

The new class of spaces called the fuzzy β-Volterra spaces with the help of
fuzzy β-dense and fuzzy β-Gδ sets have been introduced and studied. Examples
given to illustrate the concept in this paper. Some interesting characterizations
of the fuzzy β-Volterra spaces have established in this paper.
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