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Abstract. The goal of this study is to bring out the following conclusion:
Let R be a non-commutative prime ring of characteristic not two and D
be a bi-semiderivation on R with a function f (surjective). If D acts as an

endomorphism or as an anti-endomorphism, then D = 0 on R.
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1. Introduction

Over the past several years, a number of scholars have examined the rela-
tionship between particular distinctive types of mappings on a ring R and R’s
commutativity. The first achievement in this area was made possible by Divin-
sky, who proved that if an automorphism of an Artinian ring R is nontrivial
and commutative, then R must also be commutative. Luh expanded Divinsky’s
argument to prime rings. Mayne proved that if a prime ring has a non-identity
centralizing automorphism, then R must be a commutative ring. These results
have now been applied to additional algebraic structures. Posner confirmed that
once a derivation takes place on a prime ring that is centralizing and nonzero, the
commutative structure of the prime ring must exist. Over the last few decades,
a number of scholars, including Bresar, Luh, Mayne, Kharchenko, Vukman, etc.
have modified and improved these findings in various ways (see, for instance,[1],
[2], [4], [5], [6], [7], [8], [9] and [11] for further references).

R should be represented as associative ring, together with the center Z(R)
throughout the paper. Make sure that n is always a positive integer. R is re-
ferred to be a “n-torsion-free ring” if nb = 0 indicates that b = 0 for each b in
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the ring. The expression [b, d] defined as [b, d] = bd − db and served as a rep-
resentation of the commutator of b, d ∈ R. Remember that if bRb = 0 implies
that b = 0, R is semiprime, and if cRb = 0 shows that either c = 0 or b = 0, R
is said to be prime. A mapping η from R to R is recognized as a derivation on
R, if it satisfies η(ce) = η(c)e+ cη(e), for every c, e ∈ R.

Let us say a ring possesses automorphism β. If h(bd) = h(b)β(d)+bh(d) fulfills
for all b, d in R and exhibiting additivity, then the map h on R will be known as
β-derivation. Denote identity mapping by I on R, then h = β− I functioned as
β-derivation. According to Maksa [7], a function D : R×R → R is thought to
have symmetry if D(p, q) = D(q, p) for each p, q in R. A mapping from R×R
into R is said to be bi-additive if D is additive in both slots. The following is
an introduction to the bi-derivations theory: The mapping D, additive in each
tuple and possessing symmetric property is known as symmetric bi-derivation
when the mappings q 7→ D(p, q) and the map p 7→ D(p, q) are both derivations
of R. [7, 12] might be cited for thought-provoking reading on the subject. A
function h on R is referred to as the trace of D for a symmetric mapping D when
it is written as h(p) = D(p, p), p in R. We can create these mappings, as seen
in the example below:

Example 1.1. Consider a ring R =


 l 0 0

t l 0
j p l

 | l, t, j, p ∈ R

. Then

R is a noncommutative associative ring under the usual operations on matrix
like addition and multiplication. Next designed a map ϱ : R → R by ϱ(r) = l 0 0

0 0 0
j 0 0

 for all r ∈ R. ϱ must be additive function, that much is certain.

Now, introduce a map ϖ : R×R → R by ϖ(r, e) = [r, ϱ(e)] + [e, ϱ(r)] for each
r, e ∈ R, The symmetry and bi-additiveness of ϖ can be verified with ease.

J. Bergen introduces the idea of semiderivations of a ring R in [3]. A mapping
f that is additive from R to R is known as a semiderivation if there exists a
function g on R such that f(ab) = f(a)g(b) + af(b) = f(a)b + g(a)f(b) and
f(g(a)) = g(f(a)) for each a, b in R. All semiderivations associated with g are
just normal derivations if g is an identity map of R. However, if g is a homo-
morphism of R such that g ̸= Iidentity, then f = g− I is a semiderivation rather
than a derivation. Some remarkable results related to semiderivations found in
[5].

A bi-additive and symmetric mapping D from R×R to R is recognized as a
symmetric bi-semiderivation associated with a mapping f : R −→ R, if

D(pq, r) = D(p, r)f(q) + pD(q, r) = D(p, r)q + f(p)D(q, r)
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and h(f) = f(h) for each p, q, r in R. One can look in [11] for conceptual facts.
We will take f, a surjective function throughout in our theorems.

2. Main results

The present results are the generalization of the research done by Bell and
Kappe in [2]. We start with the following lemmas:

Lemma 2.1. [6] Let α be a nontrivial automorphism on a prime ring R. If
[α(t), t] = 0, for every t ∈ R, then R is a commutative ring.

Lemma 2.2. Let R be a semiprime ring and D be a bi-semiderivation on R
with a function f. If D acts as an endomorphism, then (D(c, a)−c)eD(d, a) = 0,
for each a, c, d, e ∈ R.

Proof. Since D acts as an endomorphism, we have for each a, c, b, d in R

D(cd, a) = D(c, a)D(d, a)
D(c, ab) = D(c, a)D(c, b).

(1)

Take the first identity in (1)

D(c, a)f(d) + cD(d, a) = D(c, a)D(d, a) for every a, c, d in R. (2)

Simplify above expression to get

D(c, a)f(d) + cD(d, a)−D(c, a)D(d, a) = 0 for every a, c, d in R. (3)

Put ce in place of c in (3), we obtain

D(c, a)D(e, a)f(d) + ceD(d, a)
−D(c, a)D(e, a)D(d, a) = 0 for every a, c, d, e in R.

(4)

Rearranging the above expression and use (2) to find

D(c, a){−eD(d, a)}+ ceD(d, a) = 0 for every a, c, d, e in R. (5)

This yields that

(D(c, a)− c)eD(d, a) = 0 for every a, c, d, e in R. (6)

Lemma 2.3. Let R be a semiprime ring and D be a bi-semiderivation on R with
a function f. If D acts as an anti-endomorphism, then D(b, e)r[D(b, e), t] = 0,
for each b, e, r, t ∈ R.

Proof. Since D acts as an anti-endomorphism, we have for each a, b, e in R

D(ba, e) = D(a, e)D(b, e)
D(e, ba) = D(e, a)D(e, b).

(7)

Assume the first identity in (7) to find

D(b, e)f(a) + bD(a, e) = D(a, e)D(b, e). (8)
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Replace b by b2 in (8) to get for every a, b, e in R
D(b, e)D(b, e)f(a) + b2D(a, e) = {D(a, e)D(b, e)}D(b, e). (9)

Rewrite the left hand side of (9) by use of (8), we observe

D(b, e)D(b, e)f(a) + b2D(a, e) = {D(b, e)f(a) + bD(a, e)}D(b, e). (10)

On simplification of above expression, we find

D(b, e)[D(b, e), f(a)] + b{bD(a, e)−D(a, e)D(b, e)} = 0 for every a, b, e in R.
(11)

Making use of (8), (11) takes the form below

D(b, e)[D(b, e), f(a)] + b{−D(b, e)f(a)} = 0 for every a, b, e in R. (12)

Reword the last expression by changing r = f(a), as f(a) is a surjective map on
R

D(b, e)[D(b, e), r]− bD(b, e)r = 0 for every b, e, r in R. (13)

Put rt for r in above equation and use it again to obtain

D(b, e)r[D(b, e), t] = 0 for every b, e, r, t in R. (14)

This is, what we required.

Theorem 2.4. Let R be a non-commutative prime ring of characteristic not
two and D be a bi-semiderivation on R with an automorphism function f. If D
acts as an endomorphism or as an anti-endomorphism, then D = 0 on R.

Proof. We assume first D is an endomorphism and use Lemma 2.2 to get

(D(c, a)− c)eD(d, a) = 0 for every a, c, d, e in R. (15)

Reword above expression by replacing tc for c, we have

D(t, a)f(c)eD(d, a) + tD(c, a)eD(d, a)− tceD(d, a) = 0 for each a, c, d, e, t in R.
(16)

Comparing the last two equations to obtain

D(t, a)f(c)eD(d, a) = 0 for each a, c, d, e, t in R. (17)

This implies that by using the surjectivity of f, D(t, a)reD(d, a) = 0 for every
a, d, e, r, t ∈ R. Hence we have D(d, a)reD(d, a)r = 0 for each a, d, e, r ∈ R.
Primeness of R intended us D(d, a)r = 0 for each a, d, r ∈ R. Also we can get
by last expression D(d, a) = 0 for each a, d ∈ R. Next using the additivity in
first slot as D(d, a) = D(d+ 0, a) = D(d, a) +D(0, a) for every a, d ∈ R. Use an
analogous trick for second slot to find D = 0 on R.

Next suppose that D as an anti-endomorphism, use Lemma 2.3 to have

D(b, e)r[D(b, e), t] = 0 for every b, e, r, t in R. (18)

A simple manipulation by taking suitable multiplier from left and right in (18)
and subtracting the two obtained equation, which gives us

[D(b, e), t]r[D(b, e), t] = 0 for every b, e, r, t in R. (19)
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Primeness intended us [D(b, e), t] = 0 for every b, e, t ∈ R. Put bc in place of b
in the last expression and simply to find

D(b, e)[f(c), t] + [b, t]D(c, e) = 0 for every b, e, c, t in R. (20)

This implies that

D(t, e)[f(c), t] = 0 for every e, c, t in R. (21)

Primeness of R yields that either D(t, e) = 0 or [f(c), t] = 0 for all c, e, t ∈ R.
Take the second part if [f(c), t] = 0 for all c, t ∈ R, then application of Lemma
2.1 gives the commutativity of R, that is a contradiction. Hence by first part,
we say D(t, e) = 0 for all t, e in R, and hence D = 0 on R as desired.

Corollary 2.5. Let R be a non-commutative prime ring having char ̸= 2, L be a
nonzero ideal of R and D be a bi-derivation on R. If D acts as an endomorphism
or as an anti-endomorphism on R, then D = 0 on R.

Proof. The proof is straight forward by above theorem by taking L = R.

Corollary 2.6. Let R be a non-commutative prime ring having char ̸= 2, L be a
nonzero ideal of R and D be a bi-derivation on R. If D acts as a homomorphism
or as an anti-homomorphism on R, then D = 0 on R.

Corollary 2.7. Let R be a non-commutative prime ring, L be a nonzero ideal
of R and D be a derivation on R. If D acts as a homomorphism or as an
anti-homomorphism on R, then D = 0 on R.

Proof. For the detailed proof of this result, one can look in [2].

Theorem 2.8. Let R be a semiprime ring with 2-torsion freeness, L be a
nonzero ideal of R and D be a bi-semiderivation on R with a function f. If
D acts as a homomorphism or as an anti-homomorphism, then one of the fol-
lowing conditions hold:

(1) D = 0 on R.
(2) R contains a nonzero central ideal.

Proof. First consider D acting as homomorphism, then we have from equation
(17) D(t, a)f(c)eD(d, a) = 0 for every a, c, e, d, t ∈ R. Some replacement and
surjectiveness of f yielding that

[s, t]D(b, e) = 0 for every b, e, t, s in L. (22)

Semiprimeness of R ensure us the presence of a family of prime ideals say
P = {Pi | i ∈ ⋉} such that

⋂
Pi = {0}. Let us suppose that P1 and P2

are some member of P. By (22), we have [b, d] ∈ P1 and D(c, c) ∈ P2 for all
c, d, b ∈ L. Now designed the two subsets as A = {d ∈ L | [b, d] ⊆ P1} and
C = {c ∈ L | D(c, c) ⊆ P2}. We observe that both A and C are additive
subgroup of R such that R = A

⋃
C. Being the property that a group cannot

consist of joint of its appropriate subgroups. As a result, we determine either
R = A or R = C. First, take the situation R ≠ A, this yields that R = C. That
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is, D(c, c) ∈ P2 for all c ∈ L. A simple manipulation gives that D(c, c)t ∈ P2 for
all c ∈ L and t ∈ R. Using primeness of P2, we find either D(c, c) ∈ P2 or t ∈ P2

for each c ∈ L and t ∈ R. If t ∈ P2, then [t,R] ⊆ P2, a contradiction occur to
our expectation R ≠ A. Therefore, we have D(c, c) ∈ P2 for all c ∈ R. Hence we
get D(c, c) ⊆ ∩P2 = {0} for every c ∈ R. This implies that D(c, c) = 0 for every
c ∈ R. Similarly, we discard the case when R ≠ C and we obtain R = A. This
implicit that [c, d] = 0 for each c, d ∈ L. Hence R owns a central and nonzero
ideal contained in itself.

Next think about the case, D acting as anti-homomorphism, then from equa-
tion (21) we observe D(t, e)[f(c), t] = 0 for every e, c, t ∈ R. Since f is surjective,
we have D(t, e)[s, t] = 0 for every e ∈ L and s, t inR. Repeat the same arguments
and proceed in the same way as above, we find the desired conclusion.

Corollary 2.9. Let R be a semiprime ring with 2-torsion freeness, L be a
nonzero ideal of R and D be a bi-derivation on R with a function f. If D acts
as a homomorphism or as an anti-homomorphism, then one of the following
conditions hold:

(1) D = 0 on R.
(2) R contains a nonzero central ideal.

Corollary 2.10. Let R be a prime ring L be a nonzero ideal of R and D be a
bi-derivation on R. If D acts as a homomorphism or as an anti-homomorphism,
then one of the following conditions hold:

(1) D = 0 on R.
(2) R is commutative.

Proof. By applying Theorem 2.8, we get the required result.

Example 2.11. Let R =
{(

m 0
0 n

)
| m,n ∈ 2Z8

}
is a ring under matrix

addition and matrix multiplication. Define map h from R to itself by

h

[(
m1 0
0 n1

)]
=

(
0 0
0 n1

)
and K : R×R → R by K

[(
m1 0
0 n1

)
,

(
m2 0
0 n2

)]
=

(
m1m2 0

0 0

)
for

every m1,m2, n1, n2 ∈ 2Z8. Then K is a nonzero bi-semiderivation on R with
associated function h. It is easy to verify that K acting as endomorphism and
anti-endomorphism on R but K ̸= 0. Hence the condition of primeness in the
hypothesis of above theorems can not be omitted.

3. Conclusion

We conclude by our computation and study that it would be interesting to
analyze the problem using the linearity tools of operator theory instead of purely
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ring theoretic context as only algebraic concepts are used in formulation of the
results given in the present paper.
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