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Abstract. In this paper, our primary focus revolves around the exami-

nation of a set of fractional stochastic models. Through our investigation,
we can establish the presence of a solution and its distinctiveness. Addi-

tionally, we employ a moment-based algorithm to estimate the coefficients

within these models and provide evidence that these estimations maintain
their asymptotic characteristics. To support this claim, we conduct exper-

imental studies using simulations and numerical examples.
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1. Introduction

Stochastic models have garnered increasing attention due to their capacity to
represent complex systems. This research area has become essential not only
for mathematicians and statisticians but also for professionals in fields such as
chemistry, biology, economics, and physics see [9]. In economics, a substantial
portion of economic phenomena necessitates stochastic modeling, and similarly,
in physics, several phenomena demand the application of stochastic theories see
[17] and [18] . Looking back historically, credit is owed to the biologist R. Brown
in 1827 for his observation of the highly irregular motion exhibited by a pollen
particle submerged in a fluid. The applications of stochastic modeling extends
beyond biology, and it wasn’t until approximately 80 years later Einstein and
Smoluchowski provided a coherent interpretation of this phenomenon. By a
broad definition, we can assert that Brownian motion stands as the quintessen-
tial problem in stochastic process theory [19], [20]. Moreover, it has assumed
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significant proportions. With our current knowledge, we would approach mod-
eling this system as follows.

Second section: This involves expanding upon the theoretical investigation of
a set of stochastic processes featuring fractional derivatives and presenting the
generalization of certain theorems in the realm of stochastic analysis.

Third section: Enhancing the study with explicit fractional elements, the
model coefficients are estimated using the moments-based approach.

Fourth section: This section relies on the cited algorithm to estimate coeffi-
cients in fractional models, considering it as a broader and more encompassing
scenario.

Fifth section: Numerical illustration to prove the value of theoretical study.
We commence with a vibrant and instructive example to demonstrate the sig-

nificance of this model type. The Brownian particle experiences a counteracting
viscous drag force due to the fluid’s viscosity (assuming the fluid is stationary)

Fdrag = −θmv

Here, θ represents the kinematic viscosity of the medium, and m denotes the
mass of the Brownian particle. In the field of physics, it is observed that the
smaller fluid particles move significantly faster than the Brownian particle we
aim to describe. To account for this, we will simplify the interactions between
the Brownian particle and the fluid particles. Consequently, the random changes
in velocity experienced by the Brownian particle (v) will be modeled using a
Wiener process characterized by a strength parameter, g. We can also establish
the presence of external force acting on the Brownian particles, denoted as h.
This problem can be formulated in the following manner

dqx(t) = g(t, x(t))dt+ h(t, x(t))drw(t), 0 < q, r ≤ 1 (1)

Where dq denotes the fractional derivative which we will define. First we will
expose the preliminary bases for the maternal model{

dx(t) = g(t, x(t)dt+ h(t, x(t))dw(t)
x(t0) = c0, t0 ≤ t ≤ M < ∞ (2)

2. Preliminaries

This section is dedicated to elucidating and expanding upon the essential con-
cepts related to stochastic equations, as well as the renowned theorems in the
field of stochastic analysis, and their relevance to our research. Additionally, we
delve into the fundamental principles of fractional calculus. Following this, we
create the data set that forms the focal point of our investigation, one that incor-
porates both stochastic and fractional derivative characteristics. We commence
with the following theorem, as referenced in see [19].

Theorem 1. Let a stochastic process (x(t))t∈R defined in a probability space
(Ω, A, P ) with expression (2)
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where w(t) is Brownian motion, g and h tow measurable functions on the
interval [t0,M ] , and these functions are checked on the following conditions.
There exists a constant C > 0 such that

A : |g(t, x(t)− g(t, y(t)|+ |h(t, x(t)− h(t, y(t)| ≤ C |x(t)− y(t)|
(This property is known by the Liptischizian condition)

B : |g(t, x(t))|2 + |h(t, x(t))|2 ≤ C2(1 + x2(t)).
(This condition is called restriction on growth).
so the process accepts the unique solution

Proof
This theorem must be proven because of its great importance in the following

remarks, first we shall prove the uniqueness of solution we would like to show
that

E |x(t)− y(t)|2 = 0 for all t ∈ [t0,M ]

And we suppose that
E |x(t)− y(t)| = 0

Such as y(t) and x(t) are two continuous solutions, in this case must be define
a function φ

φk(t) =

{
1, if |x(t)| ≤ k and |y(t)| ≤ k
0, otherwise

Since
φk(t) = φk(t)φk(s), s ≤ t

We have

φk(t)(x(t)− y(t)) = φk(t)

∫ M

t0

φk(s){g(s, x(s))− g(s, y(s))}ds

+

∫ M

t0

φk(s){h(s, x(s))− h(s, y(s))}dw(s)

we apply Lipschitiz condition to bound the integral

Φ(s) = |g(s, x(s))− g(s, y(s)|+ |h(s, x(s))− h(s, y(s)|
φk(s)Φ(s) ≤ kφk(s) |x(s)− y(s)| ≤ 2k2

and by the Schwartz inequality we find

E
[
φk(t) |x(t)− y(t)|2

]
≤ 2E

∣∣∣∣∣
∫ M

t0

φk(s)E{g(s, x(s))− g(s, y(s))}ds

∣∣∣∣∣
2

+2E

∣∣∣∣∣
∫ M

t0

φk(s){h(s, x(s))− h(s, y(s))}dw(s)

∣∣∣∣∣
2

≤ 2(M − t0)

∫ t

t0

Eφk(s) |g(s, x(s))− g(s, y(s))|2

+ |h(s, x(s))− h(s, y(s))|2
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≤ C0

∫ t

t0

Eφk(s) |x(s)− y(s)|2 ds = 0

Which shows that

E |x(t)− y(t)|2 = 0

Remark 2. If x(t) and y(t) are two solutions for equation (2), then

P

(
sup

t0≤t≤M
|x(t)− y(t)| = 0)

)
= 1

Proof : See reference [1].
Before studying the process (1), we recall the fractional derivatives.
[a, b] (−∞ < a < b < +∞) be a finite interval of R, the left and right Riemann

-Liouville fractional integrals Iq(a,t) and Iq(t,b) of order r are defined as follows

Iq(a,t)x(t) =
1

Γ(q)

∫ t

a

(t− u)q−1x(u)du, t > a, q > 0

and

Iq(t,b)x(t) =
1

Γ(q)

∫ b

t

(u− t)q−1x(u)du, t < b, q > 0

where the gamma function is defined

Γ(q) =

∫ +∞

0

uq−1 exp(−u)du, q > 0

Definition 3. The left and right Riemann- Liouville fractional derivatives dq(a,t)
and dq(t,b) of order q > 0, are defined

dq(a,t)x(t) =
dn

dtn

{
In−β
(a,t) (x(t))

}
=

1

Γ(n− q)

dn

dtn

∫ t

a

(t− u)n−q−1x(u)du, t > 0

and

dq(t,b) = (−1)n
dn

dtn

{
In−q
(t,b) (x(t))

}
=

1

Γ(n− q)

dn

dtn

∫ t

a

(u− t)n−q−1x(u)du, t > 0

Definition 4. The left and right Caputo fractional derivative d
(C,r)
(a,t) and d

(C,r)
(t,b)

of order β > 0 are defined by

d
(C,q)
(a,t) f(t) = dq(a,t)

x(t)−
n−1∑
j=0

x(j)(a)

j!
(t− a)j
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= dq(a,t)x(t)− dq(a,t)

n−1∑
j=0

x(j)(a)

j!
(t− a)j

= dq(a,t)x(t)−
n−1∑
j=0

x(j)(a)

Γ(j − q + 1)
(t− a)j−q

and the same for d
(C,q)
(a,t) x(t)

d
(C,q)
(t,b) x(t) = dβ(t,b)x(t)−

n−1∑
j=0

x(j)(b)

Γ(j − q + 1)
(b− t)j−q

where n = [q] + 1, in the case where 0 < q < 1 we find

d
(C,q)
(a,t) x(t) = dq(a,t)x(t)−

x(a)

Γ(1− q)
(t− a)−q

and

d
(C,q)
(t,b) x(t) = dq(t,b)x(t)−

x(b)

Γ(1− q)
(b− t)−q

dsx(t) = {β0(t)x(t) + β1(t)} dt+ {γ0(t)x(t) + γ1(t)} dw(t) (3)

We can write this stochastic model as a generalized function d
(C,q)
(t0,t)

x(t) = F (t, x(t), w(t))

x(t0) = ω(t0), 0 < r < 1
F (t, x(t), w(t)) = g(t, x(t)dt+ h(t, x(t))dw(t)

(4)

The case where s = 1 has been studied by A. Bibi and F. Mrahi in reference
[25]. And the existence and uniqueness of Itô solution process is ensured by the
general results, this solution according to Le Breton and Musiela is given by

x(t) = φ(t)

{
x(t0) +

∫ t

t0

φ−1(s)(β1(t)− γ0(s)γ1(s))ds+

∫ t

t0

φ−1(s)γ1(t)dw(s)

}
Where

φ(t) = exp

{∫ t

t0

β0(s)−
1

2
γ0(t)ds+

∫ t

t0

γ0(t)dw(t)

}
, t ≥ 0.

Now we will look for the existence and uniqueness of the model in the case (4).
First, the question that arises is that this type of model follows the conditions
of the first theorem, in this case we need to state the theorem

Theorem 5. The stochastic process (4) accepts a unique solution written in the
form

x(t) = ω(t0) +
1

Γ(q)

{∫ t

t0

(t− s)q−1g(s, x(s))dt+

∫ t

t0

(t− s)q−1h(s, x(s))dw(s)

}
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Proof
This theorem is a particular case of theorem under above in it suffices to prove

the following theorem.

Theorem 6. Let process (x(t))t∈R defined with its fractional stochastic expres-

sion {
d
(C,q)
(t0,t)

{x(t)− Φ(t, x(t))} = F (t, x(t), w(t))

x(t0) = ω(t0)
(5)

If the model satisfies the following conditions
H 1) F (t, x(t), w(t)) = Ψ1(t, x(t))dt+Ψ1(t, x(t))dw(t)
H 2) F (t, x(t), w(t)) is measurable with respect to t on I.
H 3) F (t, x(t), w(t)) is continuous on C(I,Rn).

H 4) There exist δ > 0, a real valued function v(t) ∈ L
1
δ such that for any

x(t)
F (t, x(t), w(t)) ≤ v(t)

H 5) For any x0(t), x1(t)

|Φ(t, x0(t))− Φ(t, x1(t))| ≤ θ |x0(t)− x1(t)|
Then, the model (5) accepts a unique solution defined by its following expres-

sion

x(t) = ω(t0)− Φ(t0, ω(t0)) + Φ(t, x(t)) (6)

+
1

Γ(q)

{∫ t

t0

(t− s)q−1Ψ1(s, x(s))dt+

∫ t

t0

(t− s)q−1Ψ1(s, x(s))dw(s)

}
Proof
We will make an extension for the proof. First it is easy to obtain that F is

lebesgue measurable, Based on H 2 and H 3 we can notice that

(t− s)q−1 ∈ L
1

1−q ([t0, t],R)
logically the function (t − s)q−1F (t, x(s), w(s)) will be Lebesgue integrable

with respect to [t0, t] for all t ∈ I0, and with Holder’s inequality we bound our
function ∫ t

t0

∣∣(t− s)q−1F (s, x(s), w(s))
∣∣ ds ≤ ∥v(t)∥

∥∥(t− s)q−1
∥∥

1
1−q [t0,t]

now just substitute the solution in the generalized equation (5), then

d
(C,q)
(t0,t)

{x(t)− Φ(t, x(t))}

= d
(C,q)
(t0,t)


ω(t0)− Φ(t0, ω(t0))− Φ(t, ω(t))

+ 1
Γ(q)

∫ t

t0
(t− s)q−1Ψ1(s, x(s))dt

+ 1
Γ(q)

∫ t

t0
(t− s)q−1Ψ1(s, x(s))dw(s)


= d

(C,q)
(t0,t)

(
iq(t0,t)F (t, x(t), w(t))

)
− Iq(t0t)F (t, x(t), dw(t))t=t0

(t− t0)
−q

Γ(1− q)
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through d
(C,q)
(t0,t)

(
iq(t0,t)F

)
= F (it is a fundamental property in Caputo’s Frac-

tional Calculus see [15]), and when iq(t0,t)F (t, x(t), w(t))t=t0 = 0, so we will get

to that.
d
(C,q)
(t0,t)

{x(t)− Φ(t, x(t))} = F (t, x(t), w(t))

2.1. General theorem construction. Are the conditions of the first theorem
on a stochastic process valid if the process is stochastic and fractional. Acronym.
we will call these models fractional stochastic process. Now, we construct the
following theorem.

Theorem 7. Let (x(t))t∈R fractional stochastic process defined in a probability
space (Ω, A, P ) with the following expression

d
(C,q)
(t0,t)

x(t) = g(t, x(t)dt+ h(t, x(t))dw(t) (7)

g and h are defined in the previous theorem and are checked on the following
conditions. Let a constant C > 0 such that

1 : |g(t, x(t)− g(t, y(t)|+ |h(t, x(t)− h(t, y(t)| ≤ C |x(t)− y(t)|
2 : |g(t, x(t))|2 + |h(t, x(t))|2 ≤ C2(1 + x2(t)).
then, the process (7) accepts the solution.

Proof
The proof is very simple if we write process (7) under the following form

Iq(t0,t)d
(C,q)
(t0,t)

(x(t)) = Iq(t0,t)g(t, x(t)dt+ Iq(t0,t)h(t, x(t))dw(t)

In addition to being
(C,q)
(t0,t)

(x(t)) = dq(t0,t)(x(t)− x(t0)), 0 < q < 1

and

Iq(t0,t)d
(C,q)
(t0,t)

(x(t)) = Iq(t0,t)d
q
(t0,t)

(x(t)− x(t0)), 0 < q < 1

= x(t)− x(t0)

Also, the two functions Iq(t0,t)g and Iq(t0,t)h are conducive the tow propreties

1 and 2. Thus, we will reach the following mathematical writing

x(t) = Iq(t0,t)g(t, x(t)dt+ Iq(t0,t)h(t, x(t))dw(t) + x(t0)

which shows that the sample of fractional stochastic models is a generalized
case for stochastic models.

3. Estimation

There are many approaches to estimation, and the samples of different sto-
chastic models are innumerable and very complicated, so the nature of the ap-
proach is not always valid for estimation. In the stochastic literature, there are
several methods for estimating nonlinear models in the continuous case, but the
best known is the method of moments. For our sample, the COGARCH models
were compiled by the statisticians Haug, Kluperllberg, Linder and Zapp in 2005
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see [8]. Moreover, this type of model is a special case of continuous stochastic
models. And besides, the moment approach gives better estimation results. And
to apply this method, it is necessary to specify a private category of fractional
stochastic models. This model has acquired quite some attention in the physics
literature relatively to its probabilistic properties and asymptotic behavior of its
statistical inference{

d
(C,q)
(0,t) x(t) = {γ0(t)x(t) + γ1(t)} dt+ γ2(t)d

rw(t).

x(0) = x0, 0 < q, r < 1.
(8)

(x(t))t>0 defined on some probability space (Ω, A, P ) denoted by a fractional
derivative in the Caputo sense, where {(γi(t))t∈R, i = 0, 1 or 2} the coefficients
part of the fractional stochastic model, such as γ0(t)γ1(t)γ2(t) ̸= 0, w(t) repre-
sents brownian motion process. In the simplest process where we assume that
q = r and γ2(t) = 0. Then, in this case we will find the classic solution method

dqx(t)− dqw(t) = {γ0(t)x(t) + γ1(t)} dt

Then

dq (x(t)− w(t)) = {γ0(t)x(t) + γ1(t)} dt
Which gives the solution directly according to the definition of general frac-

tional derivative

Iqdq (x(t)− w(t)) = Iq {γ0(t)x(t) + γ1(t)} dt.

Assumption 01 : see [3]. Under the following conditions, for any T > 0

a)

∫ T

0

|γi(t)| dt < ∞, i = 0, 1.

and

2γ0(t) < 0

Theorem 8. Under Assumption 01 we have the mean defined E(x(t)) = m(t),
and the variance v(t) and

C(t, s) = E {(x(t)−m(t))(x(s)−m(t))} , t > s

functions of process (8) generated by its fractional stochastic expression are
written respectively by

m(t) = φ(t)m(0)

v(t) = φ(t)

{
v(0) +

∫ t

0

φ−1(s)γ2
1(s)dt

}
C(t, s) = φ(t)φ−1(s)v(s), t ≥ s ≥ 0

where

φ(t) = exp

{∫ t

0

2γ0(z)dz

}
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Proof
To demonstrate this theorem it is necessary to write the model (8) in the form

of a product between a classical derivative and a function. Then, we will apply
the theorem 2.1 of reference [3].

d
(C,q)
(0,t) x(t) = θ(t)dx(t)

= γ0(t)x(t)dt+ γ1(t)dw(t)

so, the model will be written in a pure stochastic way

dx(t) = θ−1(t) {γ0(t)x(t)dt+ γ1(t)dw(t)}

The coefficients which we will estimate and we will designate by the following
vector

δ = (γ0(t), γ1(t), γ2(t))

Corollary 9. Under assumption 01 we have the following results
m (0) = −γ1(t)

γ0(t)

v(0) =
γ2
2(t)

|2γ2
0(t)|

v(h) = v(0) exp {γ0(t) |h|}

Corollary 10. It is assumed here that δ̂ = (γ̂0,N (t), γ̂1,N (t), γ̂2,N (t)), where N
represents the sample size. Then we have

m̂ (0) = − γ̂1,N (t)
γ̂0,N (t)

v̂(0) =
(γ̂2,N (t))2

2|γ̂0,N (t))|2

v̂(h) = v(0) exp {γ̂0,N (t)) |h|}

We seek the estimators through sub-conditions v̂(0) → 0 and v̂(h) → 0.

4. Simulation

This section is devoted to the simulation of the model (8) with real coefficients,
the case where q = 1 represents the simulation of a classic model, which shows
that fractional derivation is a generalization of normal derivation. We keep
the same values for coefficients γ0, γ1 and γ2 in order to make a constructive
comparison between the two situations. we use here some convergence criteria
noted as follows, γi, i = 0, 1 and 2 true values, but compared to the estimated
values noted γ̂i,N , i = 0, ..., 2, where N sample size, NS (number of simulations)
, RMSE noted the root mean square error, here we consider the true values to
be γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1.

To make a simulation it is necessary to take an example of Brownian move-
ment see reference of [20]

w(t) =
√
2

∞∑
i=1

sin {(i− 0.5)πt}
(i− 0.5)π

εi, t ∈ [0, 1]
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Where the sequence (εi)i∈N is mutually independent standard Gaussian ran-
dom variables. and by the polygonal approximation we have

wn = wti + (wti+1 − wti)
t− ti

ti − ti+1
t ∈ [ti, ti+1]

Table 1: Estimation for fractional stochastic (8) model with true values
γ0 = 0.015, γ1 = 0.05, γ2 = 0, 1 and r = 1.

N NS γ̂0 γ̂1 γ̂2
1000 250 0.0245 0.0396 0.1456

q = 0.90 1500 250 0.0185 0.0511 0.0986
3000 250 0.0162 0.0587 0.1234

Table 2: Estimation for fractional stochastic (8) model with true values
γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1

N NS γ̂0,N γ̂1,N γ̂2,N
1000 500 0.0164 0.0548 1.4857

q = 0.5 1500 500 0.0245 0.0785 1.0142
3000 500 0.0137 0.0864 0.9765

N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.1009 0.0458 1.2227

β = 0.2 1500 500 0.0354 0.2012 1.0165
3000 500 0.0199 0.1025 0.1253
N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.0175 0.0589 1.1245

β = 0.1 1500 500 0.0402 0.0412 1.7856
3000 500 0.0114 0.0415 0.9896

Table 3: Estimation for fractional stochastic (8) model with true values
γ0 = 0.015, γ1 = 0.05 and γ2 = 0, 1

N NS γ̂0,N γ̂1,N γ̂2,N
1000 500 0.0180 0.0555 1.0446

q, r = 0.5 1500 500 0.0235 0.0396 1.1034
3000 500 0.0767 0.0454 0.9003

N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.1156 0.0325 1.3453

q, r = 0.2 1500 500 0.0354 0.2012 1.0345
3000 500 0.0234 0.3563 0.2351
N NS γ̂0,N γ̂1,N γ̂1,N
1000 500 0.1004 0.0456 1.1345

q, r = 0.1 1500 500 0.0105 0.0412 1.8765
3000 500 0.0322 0.0418 0.9956
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Table 4: RMSE for all situations simulation
RMSE

β N NS γ̂0,N γ̂1,N γ̂1,N
0.7 1000 1000 0.0125 0.0102 0.0245
0.8 2000 2000 0.3125 0.0012 0.0290
0.9 5000 5000 0.0123 0.0223 0.0103

4.1. Conclusion and Futur works. We can observe that the classical COG-
ARCH(1,1) case offers a more accurate approximation between the estimated
values and the actual values. This observation highlights the robust asymptotic
behavior of the estimators, as demonstrated in Table 1. It’s noteworthy that as
we increase both the sample size (N) and the number of simulations (NS), the
estimators gradually converge towards values that closely resemble the actual
ones, particularly when N = 3000 and NS = 500.

In the case of fractional stochastic models, we observe a similar asymptotic
behavior in the estimated values as we increase NS and N , as illustrated in
Table 2. The numerical illustration in Table 2 of our model simulations reveal
that increasing the fractional derivative value (q) enhances the convergence be-
tween the model coefficients and their estimators for each q value (q = {0.2, 0.5
or 0.9}).

Comparing Tables 1, 2, it becomes evident that the moment-based approach
is highly effective when dealing with models featuring fractional components.
The estimated values for the q = 0.9 case are especially close to those in Table
1, and this closeness further improves with the increase in both sample size (N)
and the number of simulations (NS).

Among most physicists, the Caputo derivative is considered the most accurate
approximation. We notice that as q approaches 1, the approximation becomes
increasingly accurate, indicating that the fractional stochastic model is the best
fit in our simulations. It’s worth noting that the RMSE criterion approaches
zero as q approaches 1, able it with some minor fluctuations. Based on findings
from previous studies and estimations in this field, it can be inferred that frac-
tional stochastic models represent a broader class of models that encompasses
stochastic models. We also deduce when we simulate the model in Table 3 with
the two equal fractional derivatives we found a small disturbance in our simula-
tion which shows that the fractional derivative on the Brownian motion of the
model had an impact on our results. In the next, we will study with numerical
methods but with two different fractional derivatives r and q, that is to say, we
will generalize the study of models, this type of model plays a fundamental role
in modeling physical phenomena.
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10. C. Klüppelberg, A. Lindner, & R. Maller, A continuous-time GARCH process driven by
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