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Abstract. In this paper, we consider a feedforward network of overloaded

multiclass processor sharing queues and we give a fluid model solution
under the condition that the system is initially empty. The main theorem

of the paper provides sufficient conditions for a fluid model solution to be

linear with time. The results are illustrated through examples.
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1. Introduction

Open multiclass queueing networks are an important tool to model several
systems in computer systems. Thus, the Processor Sharing (PS) discipline has
been widely used in the analysis of such models [14] and [8]. It might be seen as
an idealization of time-sharing protocols used in computer systems. The benefit
is that, unlike in other disciplines, the system will not be blocked by a big job
because jobs are processed simultaneously. Moreover, serving many jobs might
result in substantial overhead, which therefore lowers overall performance. This
is referred to as an overloaded multiclass processor sharing queue. Furthermore,
building on the work [1] for a single queue, there is ample motivation to gen-
eralize this model to a feedforward network of such queues. Here, feedforward
includes both feedback into the same queue ( self-feedback) or feedforward to
a higher numbered queue. We call this system a feedforward network of over-
loaded multiclass processor sharing queues abbreviated as a feedforward network
of overloaded MPS queues. As mentioned before, our inspiration for this problem
is drawn from a specific case of multiclass single queue system [1]. A natural next
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step would therefore be to incorporate the finite number of multiclass queues in
addition to Processor sharing discipline. Furthermore, with the high load in
networks, it is very interesting to take into count the case where the queues are
overloaded. Moreover, the importance to consider this network lies in its ability
to model and optimize complex systems. This type of network enables the rep-
resentation of environments where multiple processing steps are involved, with a
fair allocation of resources among processes. The significance lies in its capacity
to capture real-time system dynamics, facilitating the design and optimization
of queue management policies to enhance overall system performance. Specifi-
cally, it has meaningful applications in areas such as computer networks, service
operations, and other contexts where equitable resource allocation is crucial for
ensuring efficiency and user satisfaction (e.g. [10, 15, 17]).

To study the evolution of this stochastic system, we use a fluid model solu-
tion which produces deterministic and continuous equations. The significance of
this proposed technique lies in its ability to bridge the gap between the stochas-
tic and deterministic representations, facilitating a deeper understanding of the
system’s behavior and enabling the application of well-established mathematical
techniques for analysis and prediction.
In the literature, several authors studied the fluid limits of the PS-queue. The
authors in [7, 2, 16, 3] began by taking either Poisson arrivals or exponential ser-
vice times. Work in [7] established that the queue length grows asymptotically
linearly with time for overloaded M/M/1 processor sharing queue. Authors of
[2] considered a fluid approximation for the queue length process. In [16] the
authors studied the multiclass M/M/1 discriminatory processor sharing queue.
In [3] Frolkova and Zwart considered a variation of the processor sharing queue,
inspired by freelance job websites where multiple freelancers compete for a sin-
gle job. They developed fluid limit approximations for the overloaded PS-model
with multiple (possibly infinitely many) service stages. Moreover, there are
important studies for the GI/GI/1 processor sharing queue, in the literature
[6, 4, 5, 11, 12, 19], in which the authors established properties of fluid model
solution such as existence, uniqueness and asymptotic behaviors for critically
loaded and overloaded queues, for zero or nonzero initial customers as well as
for limited processor sharing queue. These studies were extended to the mul-
ticlass case in [1], where customers may re-enter the queue as a different class.
In [9], a critical fluid model was studied. The authors developed a strategy for
analyzing the long run behavior of critical fluid model solutions using a notion of
relative entropy. In [18] the diffusion approximation of the queue length process
was developed under a state space collapse. Furthermore , in [13] the authors
described a fluid model with time-varying input that approximates a multi-
class many-server queue with time-varying arrivals (specifically, the multiclass
G/GI/N +GI queue). They demonstrated the use of the restricted fluid model
with a constant input rate to approximately solve scheduling control problems
for a queue with a constant arrival rate. In [20] Fluid deterministic models offer
precise and manageable optimization formulations to facilitate the development
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of practical, implementable policies particularly in the context of time-varying
systems. The emphasis lies lie in the practical application of fluid models to
address diverse challenges in service and healthcare operations management.

In this paper we consider a feedforward network of overloaded MPS queues,
composed of J queues and K customer classes. Each queue has a single server,
an infinite storage capacity and can receive Kj customer classes. All customers
present in a given queue are served simultaneously according to the egalitarian
processor sharing discipline: at any time, customers can be served at a rate that
is inverse of the total number of customers in that queue.
Here, our goal is to produce a fluid model solution of feedforward network of
overloaded MPS queues under the condition that all queues have no initial mass.
As one might expect, to describe the state of the fluid model in the literature
[6, 5, 11, 19], the authors used the known load factor. However, the novelty here
is the appearance of another reel factor which will be influenced on the system
state instead of the known load factor. The main idea is induction on the number
of queues. We suppose that the first queue has the load factor strictly greater
than one, then by [1] the fluid model solution at that queue grows linearly with
time. Thus, to go to the downstream queues j = 2, . . . , J , we must construct
and use this new factor. We shown that existence of fluid model solution to
downstream queues is based on this factor and that the fluid model solution at
each queue grows linearly with time. From this point we note that the adjective
“overloaded” means that this factor in each queue is greater than one.

The paper is organized as follows: Section 2 contains the model description,
including the definition of fluid model solution. Section 3 presents the main
result, which is the construction of the solution (Theorem 3.4). A particular
case of processor sharing tandem queue stated in section 4. Section 5 is devoted
to some examples. We conclude this work in Section 6.

To state the features of this system, we need to introduce some notations.
Notations: In this paper, we will let J denote the number of queues and K

denote the number of customer classes. Then J,K ∈ N and J ≤ K. Further
we let Kj to denote the set of classes belonging to queue j of dimension is Kj .
Let J be the set of all queues and K = ∪j∈JKj be the set of all classes be-
longing to queues 1, . . . , j. Vectors will be normally arranged as a column. As
an exception, the vector e stands for a row vector of ones. The transpose of a
vector or matrix A is denoted by A′. For a vector u ∈ RK

+ , we denote by uj

the sub vector of u whose component indices are in Kj . The K × K diagonal
matrix whose entries are given by the components of K-dimensional vector x
will be denoted by diag(x). The space of finite, nonnegative Borel measures on
R+ endowed with the topology of weak convergence is denoted by M. We write
⟨g, µ⟩ =

∫
gdµ for µ ∈ M and a Borel measurable function g which is integrable

with respect to µ.
For a differentiable function g we write

.
g(x) = d

dxg(x).
We will use E to denote the expectation operator with whatever space the rele-
vant random element is defined on.
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2. Fluid Model

In this section, we give a description of a fluid model for a feedforward net-
work of overloaded MPS queues.
The model has three parameters, α = (α1, . . . , αK) ∈ RK

+ , ν = (ν1, . . . , νK) the

vector of Borel probability measures νk on RK
+ that does not charge the origin

(νk({0}) = 0) and has a finite first moment denoted βk, and the nonnegative
matrix P = (pkl, k, l ∈ K). These parameters correspond to parameters in the
queueing system. Specifically, αk corresponds to the long-run average rate at
which customers of class k arrive from exterior to the system, the probability
measure νk corresponds to the distribution of i.i.d. service times for those cus-
tomers with the distribution function Bk with B̂k is its Laplace-Stieltjes trans-
form, and P is the routing matrix where pkl is routing probability from class
k to class l. Here, we only consider the routing classes from a given class to
downstream queues, then, matrix P is upper triangular block matrix, where for
each j the sub-matrices P j and P jj′ are given by: P j = (pkl, k, l ∈ Kj) and

P jj′ = (pkl, k ∈ Kj , l ∈ Kj′).
The triple (α, ν, P ) is referred to as the data for the fluid model. The network
is assumed to be open, that is, Q = I + P ′ + P ′2 + . . . is finite matrix which is
equivalent to requirement that (I − P ′) is invertible with Q = (I − P ′)−1.
Define the vector λ = Qα. The global arrival rate to the class k is then λk and
the load factor of each queue j is

ρj =
∑
k∈Kj

βkλk. (1)

A fluid model solution is two real functions A, D : R+ → RK
+ , and one measure-

valued vectors of continuous mappings µ = (µ1, ..., µK) : R+ → MK such
that A and D are continuous and nondecreasing componentwise, and for every
j ∈ J , k ∈ Kj the following equations hold

Ak(t) = αkt+

j∑
i=1

∑
l∈Ki

plkDl(t), (2)

⟨1, µk(t)⟩ = Ak(t)−Dk(t), (3)

µk(t)([x,∞)) =

∫ t

0

νk([x+ Sj(s, t),∞))dAk(s) (4)

for all t, x ∈ R+, where for each 0 ≤ s ≤ t

Sj(s, t) =

∫ t

s

1

⟨1, ejµj(u)⟩
du (5)

where infs≤u≤t⟨1, ejµj(u)⟩ > 0 and Sj(s, t) = +∞ for all 0 < s < t such that
⟨1, ejµj(t)⟩ = 0 for all 0 < s < t.
Here, Sj(s, t) is the fluid version of the cumulative service process, and repre-
sents the cumulative amount of service time at queue j on a time interval [s, t].
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Equation (2) captures the flow conservation equations, taking external arrivals
and internal routing into account. Equation (3) relates queue lengths at class k
with input/outputs. Equation (4) gives a dynamic equation that describes how
the fluid model solution evolves through time.

Let B(x) = diag (Bk(x), k ∈ K), B̂(x) = diag
(
B̂(x), k ∈ K

)
and β = diag(βk,

k ∈ K). From equations (2)-(5), a fluid model of feedforward networks of
MPS-queues is presented by fluid model at each station j which is a triple
(Aj(t), Dj(t), µj(t)) where it expression, in a vectorial form, is given by:

Aj(t) = αjt+

j−1∑
i=1

P ′jiDi(t) + P ′jDj(t), (6)

Zj(t) = Aj(t)−Dj(t), (7)

µj(t)([x,∞)) =

∫ t

0

(I −Bj)(x+ Sj(s, t))dA
j(s). (8)

particularly, by taking x = 0 in the above equation, one have the total mass at
each queue j Zj(t) = ⟨1, ejµj(t)⟩ is given by

Zj(t) =

∫ t

0

(I −Bj)(Sj(s, t))dA
j(s). (9)

3. Construction of the Fluid Model Solution

In this section, we give a fluid model solution when all queues are initially
empty.
Define the set

Λd =

{
u ∈ (R∗

+)
d :

d∑
k=1

ukβk > 1

}
. (10)

Recall that βk := ⟨χ, νk⟩, the finite first moment of the Borel probability measure
νk.

Proposition 3.1. For all nonnegative d × d-matrix A such that
∑∞

n=0 A
′n =

(I − A′)−1, for all vector of the Borel probability measure ν = (ν1, . . . , νd) and
for all λ ∈ Λd, there exists a unique, positive real number θ such that

θ = e(I −A′)(I − B̂(θ)A′)−1(I − B̂(θ))λ, (11)

where B̂k(θ) := E
[
e−θνk

]
for all k = 1, . . . , d.

Proof. Consider the function g : R∗
+ → R∗

+ as follows:

g(x) = e(I −A′)(I − B̂(x)A′)−1(I − B̂(x))λ.

We have g(0) = 0 and limx→+∞ g(x) = e(I−A′)λ > 0. Then it suffices to prove
that limx→0+

.
g(x) > 1.

According to [1], we have
(
I − B̂(x)A′

)−1

=
∑∞

n=0 B̂
n
(x)A′n then
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I − B̂(x)A′

)−1 (
I − B̂(x)

)
=
∑∞

n=0 B̂
n
(x)A′n −

∑∞
n=0 B̂

n
(x)A′nB̂(x).

Using the following formulas

d

dx

(
B̂

n
(x)A′n

)
kl

= n
.
B̂k(x)B̂

n−1

k (x)A′
kl

n
,

d

dx

(
B̂

n
(x)A′nB̂(x)

)
kl

= n
.
B̂k(x)B̂

n−1

k (x)A′
kl

n
B̂l(x) + B̂

n

k (x)A
′
kl

n
.
B̂l(x),

lim
x→0+

.
B̂(x) = −β,

lim
x→0+

d

dx

(
B̂

n
(x)A′n

)
= −nβA′n,

lim
x→0+

d

dx

(
B̂

n
(x)A′nB̂(x)

)
= −(nβA′n +A′nβ).

Straightforward computations lead to

lim
x→0+

.
g(x) = eβλ. (12)

Since λ ∈ Λd then limx→0+
.
g(x) > 1. This implies that that the function g

admits a unique fixed point θ. This proves the proposition. □

A system of a feedforward network of MPS queues is reduced to the standard
MPS queue when J = 1 and K = K1. The above proposition corresponds to
parameters in a MPS queue with d = K1, A = P 1 and λ = λ1 = Q1α1. Then,
we define a vector m1(λ1) =

(
mk(λ

1), k ∈ K1

)
as follows:

m1(λ1) = (I − P ′1)(I − B̂1(θ)P ′1)−1(I − B̂1(θ))λ1, (13)

thus θ = e m1(λ1).
In the same way, we will generalise the result above to a feedforward network of
MPS queues.
The result in Proposition 3.1 motivates the following definition. Set

ΛK =

u ∈ (R∗
+)

K :
∑
k∈Kj

ukβk > 1 for all j ∈ J

 , (14)

the K-vector m(u) =
(
m1(u1), . . . ,mJ(uJ)

)
where mj(uj) =

(
mk(u

j), k ∈ Kj

)
for all j ∈ J and the K-vector

M(u) = R m(u) for all u ∈ ΛK , (15)

where R is a triangular inferiorK×K-matrix, diagonal blocs Rj are null matrices
and Rji = P ′jiQi for j > i.

Proposition 3.2. Suppose that (α, ν, P ) is a data for feedforward network of
MPS queues. There exists a unique vector λ̄ ∈ ΛK such that,

λ̄ = α−M(λ̄) + P ′λ̄, (16)

where M(λ̄) is defined by (15).
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Proof. We apply induction on the numbers of queues. Starting with j = 1,
Equation (16) is equivalent to λ̄1 = α1 + P ′1λ̄1.
By Proposition 3.1, since

∑
k∈K1

λkβk > 1, this is analogous to the parameters

of a standard MPS queue. Then we have λ̄1 = λ1 and m1(λ̄1) is given by (13).
Next, we assume that the vectors λ̄i ∈ ΛKi and mi(λ̄i) are well defined for all
i = 1, . . . , j − 1. We go on to j. In a system of feedforward network of MPS
queues, the rate of exogenous arrivals at queue j is given by:

aj = αj +

j−1∑
i=1

P ′ji (λ̄i −Qimi(λ̄i)
)
. (17)

We pose λ̄j = Qjaj. This is equivalent to λ̄j = aj +P ′jλ̄j. This implies, by using
(17),

λ̄j = αj −
j−1∑
i=1

P ′jiQimi(λ̄i) +

j∑
i=1

P ′jiλ̄i. (18)

One observe that
∑j−1

i=1 P ′jiQimi(λ̄i) =
(
M(λ̄)

)j
where the matrix M(λ̄) is a

K-vector defined by (15).
Since (18) is verified for all j ∈ J , then we obtain (16). Moreover the vector
m(λ) is given by:

mj(λ̄j) = (I − P ′j)(I − B̂jP ′j)−1(I − B̂j)λ̄j, (19)

for all j ∈ J . This proves the proposition. □

Denoted by ρ̄j :=
∑

k∈Kj
λ̄kβk for all j ∈ J , then ρ̄j > 1 for all j ∈ J . Here

the system is called feedforward network of overloaded MPS queues.

Corollary 3.3. The link between ρ̄j and ρj is given as: ρ̄1 = ρ1 and for each
j = 2, . . . , J

ρ̄j = ρj − ejβj
(
M(λ̄)

)j
. (20)

Proof. Equation (18) implies that for all j ∈ J we have λ̄j = λj−
∑j−1

i=1 P ′jiQimi(λ̄i).
Multiplying by ejβj, then we obtain (20). □

The following theorem is the main result of this paper.

Theorem 3.4. Suppose that (α, ν, P ) is a data for feedforward network of MPS
queues. Assume that there exist λ̄ ∈ ΛK and m(λ̄) defined by (19) for all j ∈ J .
Then a fluid model solution (A(t), D(t), µ(t)) for all t ≥ 0 is given by:(

Aj(t), Dj(t), µj(t)
)
=
(
(I − B̂j)−1mj(λ̄j) t, (I − B̂j)−1B̂jmj(λ̄j) t, ζjt

)
(21)

for each j ∈ J and for all t ≥ 0, where for k ∈ Kj, ζk is a measure that is
absolutely continuous with respect to Lebesgue measure and ⟨1, ζk⟩ = mk(λ̄

j).
As a consequence,

Zj(t) = mj(λ̄j) t for all t ≥ 0. (22)



298 Amal Ezzidani, Abdelghani Ben Tahar and Mohamed Hanini

Proof. Starting with j = 1, since ρ1 > 1 then by Theorem 4.2 of [1], a fluid
model solution of queue 1 is given by:(

A1(t), D1(t), µ1(t)
)
=
(
(I − B̂1)−1m1(λ̄1) t, (I − B̂1)−1B̂1m1(λ̄1) t, ζ1t

)
,

(23)
where, for k ∈ K1, ζk is given by

ζk(A) =

∫
A

pk(x)dx for all measurable A ⊆ R+. (24)

ζk is Borel measure on R+ with density

pk(x) =
mk(λ̄

1)

(I − B̂k)

∫ ∞

x

e1m1(λ̄1) exp
(
−e1m1(λ̄1) (y − x)

)
dBk(y). (25)

Note that
∫∞
0

pk(x)dx = mk(λ̄
1) and ⟨1, ζk⟩ = mk(λ̄

1).

For j ≥ 2, since λ̄ ∈ ΛK , then the vectors λ̄j and mj(λ̄j) are given by (18) and
(19) respectively.
For each k ∈ Kj , define ζk a Borel measure on R+:

ζk(A) =

∫
A

pk(x)dx for all measurable A ⊆ R+,

with density pk(x) = mk(λ̄
j)

(I−B̂k)

∫∞
x

ejmj(λ̄j) exp
(
−ejmj(λ̄j) (y − x)

)
dBk(y) and

one observe that
∫∞
0

pk(x)dx = mk(λ̄
j) and ⟨1, ζk⟩ = mk(λ̄

j).

Next, we verify, by inspection, that Aj, Dj and µj are solutions of the equations
(6), (7) and (8). We have

ajt+ P ′jDj(t) =
(
I − B̂j

)−1 (
I − P ′jB̂j

)
mj(λ̄j) + P ′j

(
I − B̂j

)−1

B̂jmj(λ̄j) t

=
((

I − P ′jB̂j
)
+ P ′jB̂j

)(
I − B̂j

)−1

mj(λ̄j) t

=
(
I − B̂j

)−1

mj(λ̄j) t

which is the first component of (21). Moreover,

Aj(t)−Dj(t) = (I − B̂j)−1mj(λ̄j) t− (I − B̂j)−1B̂jmj(λ̄j) t

= (I − B̂j)−1(I − B̂j)mj(λ̄j) t

= mj(λ̄j) t.

Since ⟨1, ζk⟩ = mk(λ̄
j) t for k ∈ Kj , then we have the second component of (21).

Afterward that we us check the third component of (21). In the first hand, we
have

⟨1[x,+∞), ζk⟩ =

∫ ∞

x

pk(y)dy

=
ejmj(λ̄j)

1− B̂k

mk(λ̄
j)

∫ ∞

x

∫ ∞

y

exp(ejmj(λ̄j) (y − z))dνk(z)dy
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=
ejmj(λ̄j)

1− B̂k

mk(λ̄
j)

∫ ∞

x

∫ z

x

exp(ejmj(λ̄j) (y − z))dy dνk(z)

=
mk(λ̄

j)

1− B̂k

∫ ∞

x

(
1− exp(ejmj(λ̄j) (x− z))

)
dνk(z). (26)

On the other hand, since Sj(s, t) = log(t/s)/(ejmj(λ̄j)) for all 0 < s < t,∫ t

0

νk([x+ Sj(s, t),∞)) dAk(s)

=
mk(λ̄

j)

1− B̂k

∫ t

0

νk([x+ log(t/s)/(ejmj(λ̄j)),∞)) ds

= tejmj(λ̄j)
mk(λ̄

j)

1− B̂k

∫ ∞

0

νk([x+ u,∞)) exp(−ejmj(λ̄j) u)du

= tejmj(λ̄j)
mk(λ̄

j)

1− B̂k

∫ ∞

x

∫ ∞

v

exp(−ejmj(λ̄j)(v − x))dνk(y)dv

= t
mk(λ̄

j)

1− B̂k

∫ ∞

x

(1− exp(−ejmj(λ̄j) (y − x)))dνk(y). (27)

We identify the formulas (26) and (27), we find the result. □

4. Particular Case: Processor Sharing Tandem Queues

A system of processor sharing tandem queues is a particular case of feedfor-
ward network of multiclass processor sharing queues, that is, a sequence of J
tandem queues where each one has a single class, external customers arrive at
the first queue according to a renewal input process with rate α and having a
general service times distribution. Upon completing service, customers leave the
current queue and enter to the next. We have the following parameters:

pji =

{
1 if i = j + 1
0 otherwise

and Qji =

{
1 if j ≥ i
0 otherwise

(28)

Particularly, in the following corollary the service in each queue j is distributed
as Exp(µj). Then we have ρj = α/µj for j ≥ 1 and ρ̄j = µj−1/µj for j ≥ 2.

Corollary 4.1. Suppose that (α, ν, P ) is a data for processor sharing tandem
queues. Let j = 1, . . . , J , we assume that the service at each queue j follows the
exponential distribution with the mean rate of µj. If α > µj−1 > µj for each
j = 2, . . . , J then we have, for all t ≥ 0,

(A1(t) , D1(t) , Z1(t)) = (αt , µ1t , (α− µ1)t) ,

(Aj(t) , Dj(t) , Zj(t)) = (µj−1t , µjt , (µj−1 − µj)t) for j = 2, . . . , J.

5. Examples

We give in this section some examples.
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Example 1 : Processor Sharing Tandem Queues
As illustrated in Figure 1, we consider a system of processor sharing tandem
queues where J = 2. Customers arrive to queue 1 from exterior with rate α.
Their service is distributed as Exp(µ1) and when they complete service, they go
to queue 2: P12 = 1. In queue 2, customers have no external arrivals. Their
service is distributed as Exp(µ2) and when they complete service, they exit the
system: P21 = P22 = 0. We assume that there is zero unit of initial customers
in each queue: Z1(0) = Z2(0) = 0.

Figure 1. Network of processor sharing tandem queues with
J = 2

We summarize the following parameters:

P =

(
0 1
0 0

)
Q =

(
1 0
1 1

)
λ = Q(α, 0)′ = (α, α)′.

Let α = 5/4, µ1 = 1 and µ2 = 1/4. Then α > µ1 > µ2 and we have ρ1 = 5/4 > 1
and ρ̄2 = 4 > 1. By Corollary 4.1, for all t ≥ 0 we have

(A1(t) , D1(t) , Z1(t)) =

(
5

4
t , t ,

1

4
t

)
(A2(t) , D2(t) , Z2(t)) =

(
t ,

1

4
t ,

3

4
t

)
.

Example 2
Consider a system of feedforward network of MPS queues with J = 2 and K = 3.
As shown in Figure 2, The fist queue has two classes. Customers of class 1 arrive
from the exterior with rate α1, their service is distributed as Exp(µ1) and when
they complete service, they turn into customers of class 2: P12 = 1. Customers of
class 2 have no external arrivals (α2 = 0). Their service is distributed as Exp(µ2)
and when they complete service, they move to queue 2: P23 = 1. The initial
situation is that there no unit of fluid of classes 1 and 2: Z1(0) = Z2(0) = 0. The
second queue with single class. Customers have no external arrivals (α3 = 0),
their service is distributed as Exp(µ3), and when they complete service, they
exit the system: P31 = P32 = P33 = 0. There is zero unit of initial customers:
Z3(0) = 0.
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Figure 2. Feedforward network of MPS queues with J = 2
and K = 3

We have the following parameters:

P =

0 1 0
0 0 1
0 0 0

 Q =

1 0 0
1 1 0
1 1 1

 λ = Q(α1, 0, 0)
′ = (α1, α1, α1)

′.

The load factor of the first queue is ρ1 = α1 (1/µ1 + 1/µ2). For the same values
of µ1 and µ2 (e.g. µ1 = µ2 = 1), when the arrival rate is (α1, α2) = (1, 0)′, the
load factor is ρ1 = 2 > 1. Calculating

B̂1 =

( µ1

m1+m2+µ1
0

0 µ2

m1+m2+µ2

)
and

(
I − P ′1B̂1

)−1

=

(
1 0
µ2

m1+m2+µ2
1

)
.

Then the vector (m1,m2)
′ =

(
(3−

√
5)/2,

√
5− 2

)′
. This gives

(A1(t) , D1(t) , Z1(t)) =

(
t ,

√
5− 1

2
t ,

3−
√
5

2
t

)
,

(A2(t) , D2(t) , Z2(t)) =

(√
5− 1

2
t ,

3−
√
5

2
t , (

√
5− 2)t

)
.

In queue 2, ρ̄2 is given by (20) as (α1 − m1 − m2)/µ3. Let µ3 = 1/2 then

ρ̄2 = 3−
√
5 > 1. Thus m3 = (5− 2

√
5)/2 and

(A3(t) , D3(t) , Z3(t)) =

(
(3−

√
5)t ,

1

2
t ,

5− 2
√
5

2
t

)
.

6. Conclusion

In this paper, we introduced a system of a feedforward network of overloaded
MPS queues. Our main contribution is obtaining a fluid model solution to this
system under the assumption that all queues are initially empty and showing
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that this solution is linear with time.
This paper constitutes the first of the two major steps of our study of feedfor-
ward network of overloaded MPS queues. It opens the way to the study of the
fluid approximation for nonzero initial conditions. Formal proofs of this case
will be developed in later works. Moreover, the limit theorem for feed-forward
networks of critical MPS-queues not only fortifies the current scholarly inquiry
but also serves as a conduit for delving into the investigation of diffusion limits.
Furthermore, the upcoming stages of our research will be centered on the ex-
pansion and application of this network in practical domains such as computer
systems, communication networks, and web servers. The potential implications
of our approach pave the way for substantial advancements in the management
and optimization of these intricate systems.
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