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PROBLEM WITH DAMPED RESPONSE OF AN

ELECTRO-VISCOELASTIC ROD
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Abstract. We consider a mathematical model which describes the qua-

sistatic contact of electro-viscoelastic rod with an obstacle. We use a mod-

ified Kelvin-Voigt viscoelastic constitutive law in which the elasticity oper-
ator is nonlinear and locally Lipschitz continuous, taking into account the

piezoelectric effect of the material. We model the contact with a general

damped response condition. We establish a local existence and unique-
ness result of the solution by using arguments of time-dependent nonlinear

equations and Schauder’s fixed-point theorem and obtain a global existence

for small enough data.
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1. Introduction

A piezoelectric material possesses the ability to transform mechanical energy
into electrical energy, known as the direct piezoelectric effect, and the reverse
process as well. These characteristics have led to a diverse array of applications
for these materials, making them the subject of extensive research and advance-
ment. Within the realm of structural mechanics, many scenarios involve the
interaction of a deformable piezoelectric material with other bodies. In a med-
ical context, accurately modeling the interaction between surgical instruments
and bodily organs is of paramount significance to enable realistic simulations.

In this paper, we present a comprehensive model that addresses the quasistatic
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contact between an electro-elastic-viscoplastic rod and an obstacle, incorporat-
ing a general damped response condition. Our approach is particularly novel due
to the incorporation of a nonlinear electro-viscoelastic constitutive law into the
model, introducing nonstandard elements that enhance its applicability and rele-
vance in real-world scenarios. Furthermore, our work sheds light on the intricate
interplay between material properties and contact mechanics in electro-elastic-
viscoplastic systems, paving the way for deeper insights into their behavior and
potential engineering applications.

The referenced studies primarily focused on problems of contact, both dy-
namic and quasistatic, involving beams and rods, with a predominant emphasis
on materials exhibiting linear elastic or viscoelastic behavior, as documented in
[1, 2, 3, 4, 5, 6], among others in the cited literature. The studies conducted
in [7, 8] delved into the intricacies of initial and boundary frictional problems
concerning nonlinear Kelvin-Voigt viscoelastic bodies, shedding light on their
complex behavior and response. In all these papers the elasticity operator was
assumed to be a Lipschitz continuous operator and the weak solutions of the
corresponding mechanical problems were global in time.

The distinctive aspect of our paper lies in the incorporation of a modified
Kelvin-Voigt model, where the elasticity operator is locally Lipschitz contin-
uous, and it takes into account the influence of the piezoelectric effect. This
novel approach introduces a nonstandard mathematical problem, for which we
establish a global existence and uniqueness result, marking a significant contri-
bution to the field of electro-elastic modeling. Furthermore, our findings hold
the potential to expand the scope of applications in this domain, enriching our
understanding of complex material behaviors.

The paper is organized as follows. In Section 2, we describe the model for
the process. In Section 3, we list the assumptions on the problem data, present
the variational formulation of the problem and state our main existence and
uniqueness result, Theorem 3.1 and Theorem 3.2 as well as the proof of local ex-
istence and uniqueness result, and it is based on the theory of a time-dependent
nonlinear equations and Schauder’s fixed-point theorem. In Section 4, we prove
the global existence.

2. Problem statement and its variational formulation

In this section, we construct a mathematical model for the process of contact
with a damped response between an electro-viscoelastic rod and an obstacle or
foundation, and provide its variational formulation. The physical setting and
the process are as follows: An electro-viscoelastic rod occupies, in its reference
configuration, the interval Ω = (0, L), and it moves along the x-axis. It is
clamped at its left (x = 0), where the displacement and electrical potential
vanish. The right end (x = L) is in contact with the obstacle. The rod is
subjected to body forces, leading to the evolution of its state (Figure 1).
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x = 0 x = L

u0 = 0
φ0 = 0

obstacle

Figure 1. The rod in a contact process.

Let [0, T ] represent the time interval of interest, where T > 0, and consider
QT = (0, L)× [0, T ]. In the following, for (x, t) ∈ QT , we will use the following
notations: u = u(x, t) for the displacement field, σ = σ(x, t) for the stress tensor,
D = D(x, t) for the electric displacement field, and E(φ) = −∂xφ for the electric
field. Here, φ = φ(x, t) represents the electric potential.
Thus, the contact problem with damped response of an electro-viscoelastic rod
is described as follows.
Problem P. Find a displacement function u : QT → IR, a stress function σ :
QT → IR, an electric potential φ : QT → IR and an electric displacement D :
QT → IR such that:

σ = η∂xu̇+ µ(∂xu− Γ(∂xu)
2)− ϱE(φ), (2.1)

D = ϱ∂xu+ βE(φ), (2.2)

∂xσ + f = 0, (2.3)

∂xD − q = 0, (2.4)

u(0, t) = 0 for t ∈ [0, T ], (2.5)

− σ(L, t) = p(u̇(L, t)) for t ∈ (0, T ), (2.6)

φ(0, t) = 0 for t ∈ (0, T ), (2.7)

D(L, t) = 0 for t ∈ (0, T ), (2.8)

u(x, 0) = 0 for x ∈ (0, L). (2.9)

A quadriplet of functions (u, σ, φ,D) which satisfies (2.1)-(2.9) for all t ∈ [0, T ]
is called a global solution of the mathematical Problem P. A quadriplet of func-
tions (u, σ, φ,D) which satisfies (2.1)-(2.9) for all t ∈ [0, T ∗] where T ∗ < T is
called a local solution of the mathematical Problem P.
Here and below, for simplicity, we do not explicitly indicate the dependence of
various functions on the spatial variables x ∈ [0, L] and t ∈ [0, T ], and the sym-
bol u̇ denotes the time derivative, i.e., u̇ = ∂tu.
We now provide a brief description of equations and conditions.
First, the equations (2.1) and (2.2) represent the electro-viscoelastic behavior of
the rod. Here, η, µ and Γ are functions on x ∈ Ω which describe the viscosity,
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the elasticity and the nonlinearity of the material, respectively. ϱ represents a
piezoelectric coefficient and β denotes the electric permittivity constant. Notice
that (2.1) represents an electro-viscoelastic constitutive law; indeed, this equal-
ity shows that the mechanical properties of the materials are described by a
viscoelastic Kelvin-Voigt constitutive relation (see [9] for details) and, moreover,
it takes into account the dependence of the stress field on the electric field. Re-
lation (2.2) describes a linear dependence of the electric displacement field on
the strain and electric fields; such kind of relations have been frequently consid-
ered in the literature, see for instance [10] and the references therein. Existence
and uniqueness results for quasistatic displacement-tractions problems involving
Kelvin-Voigt constitutive law were recently obtained in [11].
Equations (2.3) and (2.4) represent the equilibrium equations for the stress and
the electric displacement fields, respectively, where f = f(x, t) denotes the (lin-
ear) density of the applied forces and q denote a uniform linear electrical charge
density.
Condition (2.5) is the displacement boundary conditions which means that the
rod is attached at its left end.
Condition (2.6) represent a general damped response contact condition which
state that the reaction of the obstacle at x = L depends on the velocity. Here
p is a real valued prescribed function such that p(r) = 0 for r ≤ 0 which means
that the obstacle reacts only in compression.
Condition (2.7) and (2.8) represent the electric boundary conditions which state
that the electrical potential vanishes on x = 0 and no free electrical charges
prescribed on x = L where the electric displacement field vanishes.
Finally, condition (2.9) represent the initial condition of displacement.
To derive a variational formulation of problem (2.1)-(2.9), we need some addi-
tional notations. to this end, let V be the closed subspace of H1(Ω), defined
as:

V = { v ∈ H1(Ω) ; v(0) = 0 }.
On V , we consider the inner product given by

⟨u, v⟩V =

∫ L

0

∂xu ∂xv dx. (2.10)

and let ∥ · ∥V be the associated norm, i.e., ∥v∥V = ∥∂xv∥L2(Ω). By observing
that:

∥v∥L2(Ω) ≤ L∥∂xv∥L2(Ω), for all v ∈ V, (2.11)

it follows that the usual norm ∥·∥H1 and the associated norm ∥·∥V are equivalent
norms on V and, therefore, (V, ⟨·, ·⟩V ) is a real Hilbert space.
Let us now introduce the set KM :

KM =
{
θ ∈ C([0, T ∗];V ) ∩ L∞(0, T ∗;H2(Ω)) such that ∥θ∥L∞(0,T∗;H2(Ω)) ≤ 2M

}
,

where the constant M is given by:

M =
|η|W 1,∞

η1

(
2 + L+

√
η2
η1

)
∥u0∥H2(Ω), (2.12)
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and T ∗, 0 < T ∗ ≤ T will be chosen later.
We use also the standard notation for Lp and Sobolev spaces (see e.g. [12, 13]).
Furthermore, C1(Ω) represent the space of real valued continuous differentiable
functions defined on [0, L]. If (X, ∥ · ∥X) is a real Hilbert space, we shall de-
note by C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously
differentiable functions from [0, T ] to X, , respectively, with the norms:

∥x∥C([0,T ];X) = max
t∈[0,T ]

∥x(t)∥X , ∥x∥C1([0,T ];X) = max
t∈[0,T ]

∥x(t)∥X + max
t∈[0,T ]

∥ẋ(t)∥X ,

In the study of the our mechanical problem (2.1)-(2.9), we assume the follow-
ing on the data:
The force density f , the charge density q and the initial condition u0 satisfy:

f ∈ C([0, T ];L2(0, L)), q ∈ C([0, T ];L2(0, L)), u0 ∈ H2(0, L) ∩ V. (2.13)

The elasticity function µ, the nonlinearity function Γ and the viscosity function
η satisfy the following assumptions:

µ ∈W 1,∞(0, L), µΓ ∈W 1,∞(0, L), η ∈W 1,∞(0, L), (2.14)

and that there exist µ1, µ2, γ1, γ2, η1 and η2 non negatives numbers such that:

µ1 ≤ µ ≤ µ2 on (0, L), (2.15)

γ1 ≤ µΓ ≤ γ2 on (0, L), (2.16)

η1 ≤ η ≤ η2 on (0, L). (2.17)

We also assume that the electric permittivity coefficient and the piezoelectric
coefficient satisfy:

β ∈ L∞(0, L), and there exists β∗ > 0 such that β(x) ≥ β∗ a.e. x ∈ (0, L),
(2.18)

ϱ ∈ L∞(0, L). (2.19)

Finally,, the damped response function p : IR → IR+ verifies the following.

(a) There exists a constant c1,p > 0 such that for all r1, r2 ∈ IR,

|p(r1)− p(r2)| ≤ c1,p |r1 − r2|,

(b) For any r1, r2 ∈ IR, (p(r1)− p(r2))(r1 − r2) ≥ 0,

(c) For all r ≤ 0, p(r) = 0,

(d) There exists c2,p > 0 such that |p(r)| ≤ c2,p, ∀r ∈ IR.

(2.20)

Next, it is straightforward to prove that if (u, σ, φ,D) are regular enough
satisfying (2.1)-(2.6) then for all t ∈ [0, T ] and (w,ψ) ∈ V × V , we have:∫ L

0

η∂xu̇ ∂xw dx+

∫ L

0

G(∂xu) ∂xw dx+

∫ L

0

ϱ∂xφ∂xw dx+ j(u̇, w)

=

∫ L

0

fw dx,

(2.21)
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0

β∂xφ∂xψ dx−
∫ L

0

ϱ∂xu ∂xψ dx =

∫ L

0

qψ dx,

where

G(∂xu) = µ
(
∂xu− Γ(∂xu)

2
)
. (2.22)

Thus, from (2.1)-(2.9) and (2.22), we obtain the following variational formulation
of mechanical Problem P:
Problem PV. Find u : [0, T ] → V ∩H2(Ω) and φ : [0, T ] → H1(Ω) such that:∫ L

0

η ∂xu̇ ∂xw dx+

∫ L

0

G(∂xu) ∂xw dx+

∫ L

0

ϱ∂xφ∂xw dx+ j(u̇, w)

=

∫ L

0

f w dx, ∀w ∈ V,

(2.23)

∫ L

0

β∂xφ∂xψ dx−
∫ L

0

ϱ∂xu∂xψ dx =

∫ L

0

qψ dx, ∀ψ ∈ V, (2.24)

u(0) = u0, (2.25)

for all t ∈ [0, T ], (u, φ) which satisfies (2.23)-(2.25)is called a weak solution of
problem (2.1)-(2.9). The well-posedness of variational Problem PV is discussed
in the next section, where an existence and uniqueness result in the study of this
problem is established.

3. Existence and uniqueness results

The unique solvability of Problem P follows from the following result.

Theorem 3.1. Assume that (2.13))-(2.20) hold. Then there exists T ∗ > 0,
0 < T ∗ ≤ T such that the problem (2.1)-(2.9) has a unique solution (u, σ, φ,D)
satisfying the following regularity conditions:

u ∈ C1([0, T ∗];H2(0, L)), σ ∈ C([0, T ∗];H1(0, L)),

φ ∈ C([0, T ∗];H1(0, L)), D ∈ C([0, T ∗];H1(0, L)).

Moreover, we establish the following result:

Theorem 3.2. Assume that conditions (2.13)-(2.20) hold, the data u0 and f
are sufficiently small, and that

∥∂xµ∥2L∞(0,L) + ∥µ∂xη/η∥2L∞(0,L) ≤ µ1/2. (3.1)

Then, we can take T ∗ = T .

We will prove Theorem 3.1 in several steps based on Schauder fixed point
arguments and the time-dependent nonlinear equations with strongly monotone
operators and the classical Cauchy-Lipschitz theorem. We assume in the sequel
that (2.13)-(2.20) hold and c denotes a positive constant that does not depend
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on the data, and its value may change from place to place. In the following, we
need the following notations. We denote by j the functional defined as:

j : L∞(0, T ;V )× V → IR

(u,w) 7→ p(u(L, .))w(L).

We also denote by b : V × V → R the following bilinear and symmetric applica-
tion:

b(φ,ψ) =

∫ L

0

β ∂xφ∂xψ dx.

Additionally, we denote by e : V × V → R and e∗ : V × V → R the following
bilinear forms

e(u, φ) =

∫ L

0

ϱ ∂xu ∂xφdx =

∫ L

0

ϱ ∂xφ∂xw dx = e∗(φ, u).

It is easy to see that b is continuous an V -elliptic form in the following sense:

|b(φ,ψ)| ≤Mb∥φ∥V ∥ψ∥V and b(φ,φ) ≥ β∗∥φ∥2V . (3.2)

Furthermore, there exists Me > 0 such that for all (u, φ) ∈ V × V , we have:

|e(u, φ)| ≤Me∥u∥V ∥φ∥V . (3.3)

Thus the equation (2.24) will be:

b(φ,ψ) = e(u, ψ) + ⟨q, ψ⟩V , ∀ψ ∈ V,∀t ∈ [0, T ]. (3.4)

To proceed we need the following equivalence result:

Lemma 3.3. The couple (u, φ) is solution to Problem PV if only if for all
w ∈ V and t ∈ [0, T ], we have:∫ L

0

η ∂xu̇ ∂xw dx+

∫ L

0

G(∂xu) ∂xw dx+ ⟨E∗B−1Eu,w⟩V + j(u̇, w)

= ⟨f − E∗B−1q, w⟩V ,
(3.5)

Bφ = Eu+ q, (3.6)

u(0) = u0. (3.7)

where B : V → V , E : V → V and E∗ (adjoint of E): V → V will be defined
below.

Proof. Now, let (u, φ) be solution of Problem PV. We will solve the equation
(3.4) with the electric potential φ, then this variable will be the input data in
the equation (2.23). To this end, let u : [0, T ] → V and find φ : [0, T ] → V . By
using the properties of the bilinear forms b, e and the Lax-Milgram lemma we
see that there exists a unique element φ ∈ V for all t ∈ [0, T ]. Moreover, We use
Riesz’s representation theorem to define the operators B : V → V , E : V → V
and E∗ : V → V by:

⟨Bφ,ψ⟩V = b(φ,ψ), ∀ψ ∈ V, ∀t ∈ [0, T ], (3.8)
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⟨Eu, ψ⟩V = e(u, ψ), ∀ψ ∈ V, ∀t ∈ [0, T ], (3.9)

⟨E∗φ, v⟩V = e(v, φ), ∀v ∈ V, ∀t ∈ [0, T ]. (3.10)

Hence, using (3.8)-(3.10), the equation (3.4) can be write in the form (3.6). By
replacing (3.6) in (2.23) we prove that Problem PV is equivalent to : Find
u : [0, T ] → V and φ : [0, T ] → V such that (3.5)-(3.7) are satisfied. □

Next, by using Riesz’s representation theorem, we define the operator C :
V → V and the function f1 such that:

C(v) = E∗B−1E(v), ∀v ∈ V,∀t ∈ [0, T ], (3.11)

f1 = f − E∗B−1q, ∀t ∈ [0, T ]. (3.12)

Keeping in mind the properties of E , B and E∗ it follows that C is a linear
continuous operator on V .

∃MC > 0, ∥C(u1)− C(u2)∥V ≤MC∥u1 − u2∥V , ∀t ∈ [0, T ]. (3.13)

Thus, we investigate the properties of the operators B and E∗, we remark that:

f1 ∈ V, ∀t ∈ [0, T ]. (3.14)

These results lead us to consider a variational formulation problem in which the
unknowns are vθ, σθ for all θ ∈ KM .
Problem PVθ. Find vθ : [0, T ] → V ∩ H2(Ω) and σθ : [0, T ] → H1(Ω) such
that for all θ ∈ KM and w ∈ V , we have:

σθ = η ∂xvθ + G(∂xθ) + C(θ), (3.15)∫ L

0

η ∂xvθ ∂xw dx+ j(vθ, w) = −
∫ L

0

G(∂xθ) ∂xw dx

−⟨Cθ, w⟩V + ⟨f1, w⟩V .
(3.16)

To solve (3.15)-(3.16), we consider the bilinear form a(·, ·) on V defined as follows:

a(u, v) =

∫ L

0

η ∂xu ∂xv dx, ∀u, v ∈ V. (3.17)

It follows from (2.16) and (2.11) that a(·, ·) is a bilinear continuous and coercive
form on V , that is:

|a(u, v)| ≤ C∥v∥V ∥u∥V , ∀u, v ∈ V, (3.18)

|a(u, u)| ≥ C∥u∥2V , ∀u ∈ V. (3.19)

Furthermore, by using the Riesz’s representation theorem there exists fθ ∈ V
such that:

⟨fθ, w⟩V = ⟨f1, w⟩V − ⟨G(∂xθ), ∂xw⟩L2(Ω) − ⟨Cθ, w⟩V . (3.20)

Now, by using (3.16), (3.17) and (3.20), we obtain:

a(vθ, w) + j(vθ, w) = ⟨fθ, w⟩V . (3.21)

We can now state the following lemma:
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Lemma 3.4. Let θ ∈ KM , and assume that f satisfies (2.13). Then there exists
a unique solution vθ to (3.16) such that:

vθ ∈ L∞(0, T ;H2(Ω) ∩ V ) and σθ ∈ L∞(0, T ;H1(Ω)).

Proof. By using Riesz’s representation theorem, we can define the operator B :
V → V by the relation:

(Bvθ, w)V = a(vθ, w) + j(vθ, w), ∀w ∈ V. (3.22)

Combining (3.21) and (3.22) we find

(Bvθ, w)V = (fθ, w)V , ∀w ∈ V. (3.23)

Furthermore, based on (2.20), we conclude that:

j(u1, u1 − u2)− j(u2, u1 − u2) ≥ 0, ∀u1, u2 ∈ V, (3.24)

|j(u1, v)− j(u2, v)| ≤ C∥u1 − u2∥V ∥v∥V , ∀u1, u2, v ∈ V. (3.25)

We will now demonstrate that the operator B is strongly monotone and Lipschitz
continuous on V . For this purpose, let u1, , u2 ∈ V , and then from (3.19) and
(3.24), we obtain:

C∥u1 − u2∥2V ≤ (Bu1 −Bu2, u1 − u2)V . (3.26)

Subsequently, from (3.18) and (3.25), we find:

∥Bu1 −Bu2∥V ≤ C∥u1 − u2∥V . (3.27)

Using now (3.26) and (3.27) we deduce that the operator B is strongly monotone
and Lipschitz continuous on V . Moreover, It follows from classical results for
non linear equations (see [14] Corollary 15) that there exists a unique element
vθ ∈ L∞(0, T ∗;V ). Now, let us choose w in D(Ω) (the space of test functions,
the space C1(Ω) equipped with the inductive limit topology). by using (3.25),
we then obtain:

−η ∂2xvθ = f1 − Cθ + ∂xG(∂xθ) ∂2xθ +
dη

dx
∂xvθ. (3.28)

Considering that θ ∈ L∞(0, T ;H2(Ω)) and η ∈ W 1,∞(Ω), we infer that ∂2xvθ ∈
L∞(0, T ;L2(Ω)). Consequently, we can assert that vθ ∈ L∞(0, T ;H2(Ω)). Fur-
thermore, we deduce σθ from expression (3.15). This completes the demonstra-
tion of lemma 3.4. □

Next, we consider the operator Λ defined by:

Λθ = uθ, with uθ(t) =

∫ t

0

vθ(s) ds+ u0, ∀t ∈ [0, T ]. (3.29)

We will show that the operator Λ has a fixed point.

Lemma 3.5. The map Λ : KM 7−→ KM is continuous for the topology of
C([0, T ∗]; V ).

Then, we turn to prove the following lemma.
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Lemma 3.6. Under assumptions of Theorem 3.1 there exists a constant T ∗,
0 < T ∗ ≤ T such that Λ maps KM into KM ⊂⊂ C([0, T ∗];V ) where ⊂⊂ denotes
compact embedding and KM ⊂ KM .

Proof. Let θ ∈ KM . Using equation (3.15) yields:

−η∂2xuθ = −
(
η
d2u0
dx2

+
dη

dx

du0
dx

)
+
dη

dx
∂xuθ +

∫ t

0

dµ

dx
∂xθ ds

+

∫ t

0

µ∂2xθ ds−
d(µΓ)

dx

∫ t

0

(∂xθ)
2 ds− 2µΓ

∫ t

0

∂xθ ∂
2
xθ ds

+
dC
dx

∫ t

0

θ ds+ C
∫ t

0

∂xθ ds+

∫ t

0

f1(s) ds,

and since θ ∈ KM , we have:

η1∥∂2xuθ∥L2(Ω) ≤ ∥η∥W 1,∞(Ω) ∥u0∥H2(Ω) +

∥∥∥∥dηdx
∥∥∥∥
L∞(Ω)

∥∂xuθ∥L∞(0,T∗;L2(Ω))

+ t
(
2
(
∥µ∥W 1,∞(Ω) +

∥∥∥∥dCdx
∥∥∥∥
L∞(Ω)

+ ∥C∥L∞(Ω)

)
M

+ 4

∥∥∥∥d(µΓ)dx

∥∥∥∥
L∞(Ω)

M2 + ∥f1∥2L∞(0,T∗;L2(Ω))

)
. (3.30)

Moreover, by choosing w = uθ(t) in (3.5), we obtain:

1

2

d

dt

∫ L

0

η |∂xuθ|2 dx

=

∫ L

0

f1 uθ dx− j(u̇θ, uθ)−
∫ L

0

G(∂xθ) ∂xuθ dx+

∫ L

0

C u2θ dx,∀ t ∈ [0, T ].

Therefore, integrating in time from 0 to t, we get:∫ L

0

|∂xuθ|2 dx ≤ η2
η1

∫ L

0

∣∣∣∣du0dx
∣∣∣∣2 dx+

t2

η21

(
∥f1∥2L∞(0,T∗;L2(Ω)) + c21,p

+ ∥G(∂xθ)∥2L∞(0,T∗;L2(Ω)) + 2∥C∥L∞(Ω)

)
. (3.31)

Thus, since θ ∈ KM , we obtain:

∥∂xuθ∥L∞(0,T∗;L2(Ω)) ≤
√
η2
η1

∥∥∥∥du0dx
∥∥∥∥
L2(Ω)

+
t

η1

(
∥f1∥L∞(0,T∗;L2(Ω)) + c1,p

+ 2M∥µ∥L∞(Ω)M + 4M2∥µΓ∥L∞(Ω) +
√
2∥C∥

1
2

L∞(Ω)

)
.

(3.32)

Exploiting (3.32) and from the following inequality:

∥uθ∥L∞(0,T∗;L2(Ω)) ≤ L∥∂xuθ∥L∞(0,T∗;L2(Ω)),
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there exists T ∗, 0 < T ∗ ≤ T such that Λθ ∈ KM .
To proceed, we need the following compactness result, which we recall in this

section for the convenience of the reader.

Lemma 3.7. (cf. [15]) Let X, B and Y be three Banach spaces such that
X ⊂ B ⊂ Y where the embedding X ⊂ B is compact and let s > 1. Then

L∞(0, T ;X) ∩W 1,s([0, T ];Y ) ⊂ C([0, T ];B),

with the corresponding compact embedding.

First, let’s prove that KM endowed with the topology of C([0, T ];V ) is a
closed set in C([0, T ];V ). Consider a sequence (θk) in KM such that θk strongly
converges to θ in C([0, T ∗];V ). As θk ∈ KM , there exists a subsequence, still
denoted as (θk), such that:

θk ⇀ z in L∞(0, T ∗; H2(Ω)) weak∗,

with

∥z∥L∞(0,T∗; H2(Ω)) ≤ lim inf∥θk∥L∞(0,T∗;H2(Ω)). (3.33)

By uniqueness of the limit in D′(QT∗), we conclude that:

θ ∈ L∞(0, T ∗; H2(Ω)),

and

∥θ∥L∞(0,T∗; H2(Ω)) ≤ 2M. (3.34)

Now, let us remark that θ 7−→ uθ maps KM into a relative compact set KM

of C([0, T ∗]; V ). Indeed, from Lemma 3.6 and (3.29), KM is bounded in
W 1,∞(0, T ∗;H2(Ω) ∩ V ) and we conclude with Lemma 3.7. □

We now have all the necessary elements to prove Lemma 3.5. To begin, let’s
consider a sequence (θk) from KM converging to θ in C([0, T ∗];V ). Utilizing
(3.34), we conclude that θ ∈ KM . We denote in the sequel by uθk and uθ the
solution of Problem PVθ for θk and θ, respectively, we have:

∥Λθk(t)− Λθ(t)∥V ≤
∫ t

0

∥vθk(s)− vθ(s)∥V ds, (3.35)

which leads easily to the existence of a constant C(T ∗) > 0 such that:

∥Λθk − Λθ∥L∞(0,T∗; V ) ≤ C(T ∗)∥θk − θ∥L∞(0,T∗;V ). (3.36)

which implies Λ is continuous for the topology of C([0, T ∗]; V ). Thus, we have
proved that Λ defined from a non empty bounded closed convex set KM into a
non empty bounded relatively compact convex set KM in C([0, T ∗];V ) is continu-
ous provided with the topology of C([0, T ∗];V ). Then, we end with the Schauder
fixed-point theorem (see [16] Corollary 3.6.2 p. 163), we deduce that the map
θ 7−→ uθ possesses a fixed point denoted by u.
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Also, we need to prove that u is more regular than W 1,∞(0, T ∗;H2(Ω)) ∩
C1([0, T ∗];V ). Since u satisfies, in the distribution sense

−η ∂2xu̇ = f1 − Cu+ ∂x(G(∂xu)) +
dη

dx
∂xu̇,

and given that f ∈ C([0, T ∗];L2(Ω)), we can deduce that:

∂2xu̇ ∈ C([0, T ∗];L2(Ω)),

since ∂x(G(∂xu)) ∈ C([0, T ∗];L2(Ω)) and ∂xη∂xu̇ ∈ C([0, T ∗];L2(Ω)). Therefore
(u, σ) satisfy the regularity:

(u, σ) ∈ C1([0, T ∗];H2(Ω))× C([0, T ∗];H1(Ω)).

We now have all the ingredients to prove Theorem 3.1.
Existence of solution.
Let θ∗ ∈ KM be the fixed point of Λ and let uθ∗ and σθ∗ be the functions defined
by:

uθ∗(t) =

∫ t

0

vθ∗(s) ds+ u0, (3.37)

σθ∗(t) = G(∂xuθ∗) + η∂xvθ∗ + C(uθ∗). (3.38)

Since vθ∗ ∈ C([0, T ∗]; V ), using (3.37) and (3.38), we find uθ∗ ∈ C1([0, T ∗]; V )
and σθ∗ ∈ C([0, T ∗]; L2(Ω)). By using (3.37), we have uθ∗(0) = u0 and uθ∗ = 0
on {0} × [0, T ∗]. Moreover, since θ∗ = Λθ∗ = u∗θ and vθ∗ = u̇θ∗we find:

σθ∗(t) = G(∂xuθ∗) + η∂xvθ∗ + C(uθ∗)

= G(∂xθ∗) + η∂xu̇θ∗ + C(θ∗), (3.39)

and by (3.16) and (3.39) it follows that:

⟨σθ∗(t), ∂xw⟩L2(Ω) + j(u̇θ∗ , w) = ⟨f1(t), w⟩V , ∀w ∈ V.

Moreover, we have from (3.5), (3.6), (3.11) and (3.12) that:∫ L

0

η ∂xu̇θ∗ ∂xw dx+

∫ L

0

G(∂xuθ∗) ∂xw dx+

∫ L

0

ϱ∂xφθ∗∂xw dx+ j(u̇, w)

=

∫ L

0

f w dx, ∀w ∈ V, (3.40)

Taking w = ψ ∈ D(Ω) in the previous equality, we obtain:

⟨σ(t), ∂xψ⟩L2(Ω) = ⟨f, ψ⟩V .
Therefore, we deduce that:

∂xσ + f = 0, in D′, (3.41)

where D′ is the dual space of D(Ω) (called the space of (Schwartz) distributions).
Then using the following equality:

⟨σ(t), ∂xw⟩L2(Ω) = ⟨f, w⟩L2(Ω) − p(u̇(L, t))w(L), ∀w ∈ V, (3.42)



Mathematical Analysis of Contact problem with Damped Response of ... 317

we obtain:

⟨σ(t), ∂xw⟩L2(Ω) + ⟨∂xσ,w⟩L2(Ω) = −p(u̇(L, t))w(L), ∀w ∈ V. (3.43)

Thus by using (3.41), (3.42) and (3.43), it follows:

σ(L, t)w(L) = −p(u̇(L, t))w(L), ∀w ∈ V.

which implies:
σ(L, t) = −p(u̇(L, t)) on [0, T ∗].

To conclude (u, σ) represents a solution to mechanical problem (2.1)-(2.9).
Uniqueness of solution.
Let (ui, σi) be two solutions of (2.1)-(2.9), i = 1, 2, having the regularity
C1([0, T ∗];H2(Ω)) × C([0, T ∗];H1(Ω)). Let us denote U = u1 − u2. Taking

w = U̇ in (2.23), we obtain: f or all t ∈ [0, T ∗]∫ L

0

η |∂xU̇ |2 dx+

∫ L

0

(G(∂xu1)− G(∂xu2))∂xU̇ dx+ j(u̇1, U̇)− j(u̇2, U̇) = 0.

(3.44)
Since ui ∈ C([0, T ∗];H2(0, L)) and G is a locally Lipschitz continuous, and j is
monotone, we get:

∥U̇∥V ≤ c∥U∥V ,
and therefore,

d

dt
∥U∥2V ≤ c∥U∥2V .

Using now a Gronwall-type argument, it follows that: u1 = u2, since U(0) = 0.
This equality implies σ1 = σ2 which concludes the proof.

4. Proof of Theorem 3.2

We proceed to multiply the equations represented in (2.1)-(2.3) by u and
integrate over Ω, we obtain:

1

2

d

dt

∫ L

0

η|∂xu|2 dx+

∫ L

0

µ|∂xu|2 dx

=

∫ L

0

f1 u dx− ⟨Cu, u⟩V +

∫ L

0

µΓ(∂xu)
2 ∂xu dx− j(u̇, u),

thus,

1

2

d

dt

∫ L

0

η|∂xu|2 dx+
(
µ1 −MC − c∥µΓ∥L∞(0,L)∥u∥H2(Ω)

) ∫ L

0

|∂xu|2 dx

≤ (L∥f1∥L2(Ω) +
√
Lc2,p)∥u∥V .

This gives us:

d

dt

∫ L

0

η|∂xu|2 dx+
(
µ1 − 2MC − 2c∥µΓ∥L∞(0,L)∥u∥H2(0,L)

) ∫ L

0

|∂xu|2 dx

≤ 2(L∥f1∥L2(Ω) +
√
Lc2,p)∥u∥V .
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In a analogous way, we multiply the equations represented in (2.1)-(2.3) by
∂x(η∂xu) and then integrate it across the domain Ω, resulting in the following
expression:

1

2

d

dt

∫ L

0

|∂x(η∂xu)|2 dx = −
∫ L

0

f∂x(η∂xu) dx−
∫ L

0

∂x (µ∂xu) ∂x(η∂xu) dx

+

∫ L

0

∂x

(
µΓ (∂xu)

2
)
∂x(η∂xu) dx− ⟨∂xCu, η∂xu⟩V

− ⟨∂xE∗B−1Eq, η∂xu⟩V ,

1

2

d

dt

∫ L

0

|∂x(η∂xu)|2 dx = −
∫ L

0

f∂x(η∂xu) dx−
∫ L

0

∂xµ∂xu∂x(η∂xu) dx

−
∫ L

0

µ∂2xu∂x(η∂xu) dx+

∫ L

0

2µΓ∂2xu∂xu∂x(η∂xu) dx

+

∫ L

0

∂x(µΓ)(∂xu)
2 ∂x(η∂xu) dx− ⟨∂xCu, η∂xu⟩V

− ⟨∂xE∗B−1Eq, η∂xu⟩V ,

since:∫ L

0

µ∂2xµ∂x(η∂xu) dx =

∫ L

0

µ

η
|∂x(η∂xu)|2 dx−

∫ L

0

µ

η
∂xη∂xu∂x(η∂xu) dx,

and ∫ L

0

2µΓ∂2xu∂xu∂x(η∂xu) dx =

∫ L

0

2µΓ

η
∂xu|∂x(η∂xu)|2 dx

−
∫ L

0

2µΓ

η
∂xη(∂xu)

2∂x(η∂xu) dx,

it is straightforward that:

d

dt

∫ L

0

|∂x(η∂xu)|2 dx+

(
µ1

η2
dx− cµ,Γ,η∥u∥H2(Ω)

)∫ L

0

|∂x(η∂xu)|2 dx

≤ η2
µ1

(
∥f∥2L2(Ω) + c

(
∥q∥2L2(Ω) + ∥C∥2L∞(Ω)

))
+
η2
µ1

(
∥∂xµ∥2L∞(Ω)

+

∥∥∥∥µ∂xηη
∥∥∥∥2
L∞(Ω)

+ cµ,Γ,η∥u∥H2(Ω)

)∫ L

0

|∂xu|2 dx.

Taking into account the assumption (3.1), we derive the subsequent estimation:

d

dt
ϕ+ (c1,µ,Γ,η,L − c2,µ,Γ,η,Lϕ

1/2)ϕ

≤ c3,µ,Γ,η,L

(
∥f∥2L2(Ω) + c

(
∥q∥2L2(Ω) + ∥C∥2L∞(Ω)

))
+ c4,µ,Γ,η,L,
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where ϕ(t) =

(∫ L

0

|∂xu|2 + |∂2xu|2 dx

)
(t). Let us assume u0 such that ϕ(0) ≤

c1
4c2

and let us suppose that ϕ
1
2 (t) < c1

2c2
for all t < t0 and ϕ

1
2 (t0) =

c1
2c2

. By the
inequality established earlier, we will obtain:

d

dt
ϕ(t0) + c5,µ,Γ,η,L

≤ c3,µ,Γ,η,L

(
∥f∥2L2(Ω) + c

(
∥q∥2L2(Ω) + ∥C∥2L∞(Ω)

))
(t0) + c4,µ,Γ,η,L.

If we assume that:

c3,µ,Γ,η,L

(
∥f∥L∞(0,T ;L2(0,L)) + c

(
∥q∥L∞(0,T ;L2(0,L)) + ∥C∥2L∞(Ω)

))
+ c4,µ,Γ,η,L

< c5,µ,Γ,η,L

we obtain:
d

dt
ϕ(t0) < 0,

which is not possible. As result, for all periods where u exists,

ϕ
1
2 (t) < c1/2c2.

Now, we can achieve global existence for sufficiently small initial data by con-
solidating the local solution obtained with:

M =
c1|η|W 1,∞

2c2η1

(
2 + L+

√
η2
η1

)
(1 + L2)1/2, (4.1)

with the assistance of the uniqueness result, the proof is now concluded.

Conflicts of interest : The authors certify that they have NO affiliations
with or involvement in any organization or entity with any financial interest
(such as honoraria; educational grants; participation in speakers’ bureaus; mem-
bership, employment, consultancies, stock ownership, or other equity interest;
and expert testimony or patent-licensing arrangements), or non-financial interest
(such as personal or professional relationships, affiliations, knowledge or beliefs)
in the subject matter or materials discussed in this manuscript.

Data availability : Not applicable

References

1. K.T. Andrews, M. Shillor and S. Wright, A hyperbolic-parabolic system modelling the ther-

moelastic impact of two rods, Math. Methods Appl. Sci. 17 (1994), 901-908.
2. K.T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in

frictional contact with a rigid obstacle, J. Elasticity 42 (1996), 1-30.
3. K.T. Andrews, P. Shi, M. Shillor and S. Wright, Thermoelastic contact with Barber’s heat

exchange condition, Appl. Math. Optim. 28 (1993), 11-48.

4. K.L. Kuttler and M. Shillor, A one-dimensional thermoviscoelastic contact problem, Adv.
Math. Sci. Appl. 4 (1994), 141-159.



320 Lahcen Oumouacha, Youssef Mandyly, Rachid Fakhar, EL Hassan Benkhira

5. EL-H. Essoufi, A global existence and uniqueness result of a non linear quadratic Kelvin-

Voigt model, Conference MTNS2000, Perpignan, France, June, 2000.
6. K. Bartosz and M. Sofonea, Modeling and analysis of a contact problem for a viscoelastic

rod, Zeitschrift für Angewandte Mathematik und Physik 67 (2016), 127.

7. M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal com-
pliance and friction, Journal of Elasticity 51 (1998), 105-126.

8. M. Rochdi, M. Shillor and M. Sofonea, A quasistatic contact problem with directional fric-

tion and damped response, Applic. Anal. 68 (2006), 409-422.
9. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplas-

ticity, Studies in Advanced Mathematics 30 (2002), AMS/IP.

10. R.C. Batra and J.S. Yang, Saint-Venant’s principle in linear piezoelectricity, Journal of
Elasticity 38 (1995), 209-218.

11. El. H. Benkhira, R. Fakhar and Y. Mandyly, Analysis and Numerical Approximation of
a Contact Problem Involving Nonlinear Hencky-Type Materials with Nonlocal Coulomb’s

Friction Law, Numerical Functional Analysis and Optimization 40 (2019), 1291-1314.

12. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
13. J.L. Lions and E. Magenes, Nonhomogenuous Boundary Value Problems and Applications,

Vol II, Springer-Verlag, Berlin, 1972.

14. H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité,
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