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NUMERICAL TREATMENT OF NON-MONOTONIC

BLOW-PROBLEMS BASED ON SOME NON-LOCAL

TRANSFORMATIONS

BASEM S. ATTILI

Abstract. We consider the numerical treatment of blow-up problems hav-

ing non-monotonic singular solutions that tend to infinity at some point in

the domain. The use of standard numerical methods for solving problems
with blow-up solutions can lead to significant errors. The reason being that

solutions of such problems have singularities whose positions are unknown

in advance. To be able to integrate such non-monotonic blow-up problems,
we describe and use a method of non-local transformations. To show the

efficiency of the method, we present a comparison of exact and numerical
solutions in addition to some comparison with the work of other authors.
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1. Introduction

Integrating nonlinear first and second order Cauchy problems with blow-up
solutions using standard numerical methods leads to difficulties and significant
errors. This is due to the fact that their solutions tend to infinity at some point
x∗ in the domain which is not known in advance, see [11].

Many authors treated the blow-up problem numerically. To mention a few,
the authors in [1] used an adaptive time step procedure with explicit Runge-
Kutta method. An arc length transformation technique was used by [8] that
generates a sequence which is linearly convergent. A re-scaling technique was
used by [10] with the help of time-series approach that controls the growth of the
re-scaled variables. The authors in [12] used a method based on compactification
and Lyapunov function validation method. Compactification was also used by
[7] to compute critical points at infinity with blow up solutions. The idea of
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transformation was used by [2] to transform the Falkner-Skan boundary value
problem on a semi infinite interval with a condition at infinity to a problem
defined on a finite interval.

We will consider the numerical treatment of such Cauchy problem by first
transforming the system into an equivalent system of equations using some local
and non-local transformation. We will consider introducing a new independent
variable in two ways; namely, a differential transform as a new variable in one
case and a non-local variable in the second. In both cases the solution will be
in a parameterized form and is equivalent to the solution of the original Cauchy
problem, similar transformations with different details can be found in [13, 14].
One of the most important characteristics of this paprameterized solution is that
it does not have a blow up solution, making it suitable to be solved numerically
by any standard initial value solver like 4-th order Runge-Kutta method. The
efficiency of the suggested transformation will be shown through solving some
examples that admit an exact solution by comparing the numerical solution
with the exact. The main advantage of the proposed transformation is that the
solution is obtained in a parametric form which, for large values of the introduced
new variable, the solution tend to the asymptotic solution exponentially. Other
transformations like the hodograph or the arc-length leads to solutions which
tend to the asymptotic solution slowly.

The outline of the paper will be as follows. In Section 2 we will consider
the first order problem while in Section 3 we will consider the second order
problem. In Section 4 we will transform the second order problem using a non-
local transformation. Numerical results will are presented in the in each of the
sections 2-4. Some conclusions will be given in the final section.

2. Blow-Up Solutions - 1st Order

Consider the general first order problem of the form

y′ = βyn, x > 0, y(0) = α (1)

with n > 1, α, β are positive constants.
The exact solution of this differential equation can be given in the form

y =
C1

(x∗ − x)
C2

with C1 =
[
β (n− 1)

−1
n−1

]
, C2 = 1

n−1 and the singular point x∗ = 1
αn−1β(n−1) .

Here the solution exists for 0 ≤ x < x∗ and does not exist for x ≥ x∗. For
example, if α = β = 1 and n = 2, then problem (1) will be

y′ = y2, x > 0, y(0) = 1 (2)

C1 = 1, C2 = 1 and the singular point x∗ = 1, hence the solution is y =
(1− x)

−1
, the solution exists for 0 ≤ x < 1 and does not exist for x ≥ 1.

From the this example, see Figure 1, we notice that applying explicit numer-
ical methods will lead to faster growth in the solution leading to an overflow
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when passing through the singularity which is usually unknown. Again when
using implicit methods, the solution goes to the negative region before or close
to the singularity.
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Figure 1. Exact solution of the system given in (2).

2.1. Transformation of the 1st Order Problem. Given the general first
order initial value problem

y′ = f (x, y) , x > 0, y(x0) = y0 (3)

where the prime ”′” represents differentiation with respect to x, f (x, y) >

0, x0 ≥ 0, y0 > 0 and with δ > 0, we have f
y1+δ → ∞ as y → ∞.

Now if we let t = f (x, y) then assuming x = x(t) and y = y(t), differentiating
with respect to ”t”, we have

1 = fx
dx

dt
+ fy

dy

dt
= fx

dx

dt
+ fy

dy

dx

dx

dt
.

Hence with t = f (x, y) and y′ = t, we have

dx

dt
=

1

fx + t fy

and similarly
dy

dt
=

t

fx + t fy
.

This leads to the system

dx

dt
=

1

fx + t fy
,
dy

dt
=

t

fx + t fy

x (t0) = x0, y(t0) = y0. (4)

with t0 = f (x0, y0) .
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Assuming fx + t fy > 0 for t0 < t < ∞, then (4) can be solved numerically

using any standard initial value solver without any difficulty since dx
dt → 0 as

t → ∞.
If we apply this transformation to the test problem given in (2); that is, t = y′

or t = y2, then the system to be solved numerically is given by

dx

dt
=

1

fx + t fy
,
dy

dt
=

t

fx + t fy

x (t0) = x0, y(t0) = y0. (5)

2.2. Non-Local Transformation. We start by introducing an auxiliary vari-
able η, which is non-local, of the form

η =

x∫
x0

g(x, y(x))dx.

Then we transform the Cauchy problem into a new system of differential equa-
tions as follows. With η > 0, and from the chain rule, we have

dx

dη

dη

dx
= 1 or

dx

dη
g(x, y) = 1 or

dx

dη
=

1

g(x, y)

and similarly

dy

dη

dη

dx
= f(x, y) or

dy

dη
=

f(x, y)

g(x, y)
.

Here g(x, y) is a regularizing function that depends on the solution of (3) and
g(x, y) is such that

g > 0 for x ≥ x0, y ≥ y0 and g → ∞ as y → ∞. (6)

Notice also that as a result f
g → k for some constant k as y → ∞ and dx

dη =
1

g(x,y) → 0 as y → ∞.

There are more than one choice of g(x, y) as long it satisfies the conditions in
(6). Some of the choices are as follows:

(1) Arc-length where g =
√
1 + f2 and in such a case, the system to be

solved is

dx

dη
=

1√
1 + f2

,
dy

dη
=

f√
1 + f2

x(0) = x0, y(0) = y0.

(2) g = 1 + |f | and the system to be solved is

dx

dη
=

1

1 + |f |
,
dy

dη
=

f

1 + |f |
x(0) = x0, y(0) = y0.
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(3) g = f
y and the system to be solved is

dx

dη
=

y

f
,
dy

dη
= y

x(0) = x0, y(0) = y0.

whose solution is y = y0e
η.

Note that one can combine (1) and (2) and take g = k1 + (k2 + |f |n)
1
n . We

now test some of these choices numerically.
Example 1: Given

y′ = y2, x(0) = 0, y(0) = 1

1) If we choose g =
√
1 + f2, then the system to be solved will be

dx

dη
=

1√
1 + y4

,
dy

dη
=

y2√
1 + y4

x(0) = 0, y(0) = 1.

Then solving using 4th order Runge-Kutta method [4], the results obtained are
given in Figure 2. The first part of the figure gives the parametric solutions x(t)
and y(t) while the second shows the exact and the computed solution y(t). We
observe that the computed solution (dots) agrees very well with the computed
one (solid).
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Figure 2. (A): The solutions x(t) and y(t).
(B): The exact (solid) and computed (dots) solution y(t).

2) If we choose g = f
y , then the system to be solved will be

dx

dη
=

1

y
,
dy

dη
= y.

then with x(0) = 0, y(0) = 1, the results are given in Figure 3 while with x(0) =
0, y(0) = 2, the results are given in Figure 4. The same observation again, there
is a very well agreement between the exact and the computed solutions.
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Figure 3. (A): The solutions x(t) and y(t).
(B): The exact (solid) and computed (dots) solution y(t).
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Figure 4. (A): The solutions x(t) and y(t).
(B): The exact (solid) and computed (dots) solution y(t).

3. Blow-Up Problem - 2nd Order

The problem under consideration has the form

y′′ = f (x, y, y′) , x > x0

y(x0) = y0, y′(x0) = y1 (7)

where the prime ”′” denotes differentiation with respect to x with f(x, y, u) > 0
if y > y0 > 0 and u > y1 > 0 also f increases fast as y → ∞.

Then using the same logic as that of the first order case, let

y′ = t, y′′ = f(x, y, t)

with t = t(x) and y = y(x) are the unknown functions.
Now

dy

dt
=

dy

dx

dx

dt
= t

dx

dt
.

also since
d

dt
(y′) = 1 implies 1 =

dy′

dx

dx

dt
= y′′

dx

dt
.
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or

y′′
dx

dt
= 1 leads to

dx

dt
=

1

f(x, y, t)

and similarly
dy

dt
=

t

f(x, y, t)
.

This leads to the system to be solved given as

dx

dt
=

1

f(x, y, t)
,
dy

dt
=

t

f(x, y, t)

x(t0) = x0, y(t0) = y0, t0 = y1.

The solution of the system does not have a blow-up singularities and can be
solved with a fixed step initial value solver like 4th order Runge-Kutta method,
see [4].

To illustrate the transformation above we consider the following general ex-
ample.

Example 2: Consider the general problem

y′′ = βnyn−1y′, x > 0, y(0) = α, y′(0) = αnβ. (8)

Note that this is the derivative of y′ = βyn, y(0) = α with α > 0, β > 0 and
n > 1 whose exact solution is

y = A (x∗ − x)
−B

and no solution for x ≥ x∗, A = [B (n− 1)]
1

1−n , x∗ = 1
αn−1B(n−1) , B = 1

n−1 > 0.

Now with α = β = 1 and n = 2, the problem becomes

y′′ = 2y3y′, x > 0, y(0) = 1, y′(0) = 1.

If we let t = y′, then the system to be solved is

dx

dt
=

1

2y3
,
dy

dt
=

t

2y3

t0 = 1, x (1) = 0, y(1) = 1.

Solving the system using Runge-Kutta of order 4, the results obtained for the
exact and the numerical solutions are given in Figure 5.

Example 3: Consider the problem

y′′ = e3y, x > 0, y(0) = 0, y′(0) = 1.

The resulting system is

dx

dt
= e−3y,

dy

dt
= te−3y

t0 = 1, x (1) = 0, y(1) = 0.

The results obtained are reported in Figure 6.
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Figure 5. (A): The solutions x(t) and y(t).
(B): The exact (solid) and computed (dots) solution y(t).
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Figure 6. (A): The solutions x(t) and y(t).
(B): The exact (solid) and computed (dots) solution y(t).

4. None-Local Transform for 2nd Order

Consider the second order problem given by (7)

y′′ = f (x, y, y′) , x > x0

y(x0) = y0, y′(x0) = y1.

We rewrite the problem in an equivalent first order system

y′ = u, u′ = f(x, y, u)

y(x0) = y0, u(x0) = y1.

As we have done before in the first order case, we introduce the variable

η =

x∫
x0

g(x, y, u)dx, y = y(x), u = u(x).
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This leads to the system (details are omitted since they are similar to the first
order case)

dx

dη
=

1

g(x, y, u)
,
dy

dη
=

u

g(x, y, u)
,
du

dη
=

f(x, y, u)

g(x, y, u)
, η > 0

x(0) = x0, y(0) = y0, u(0) = y1. (9)

Then with the proper choice of g(x, y, u), the resulting system in (9) will not
have a blow-up singularities. Hence can be solved using any initial value solver
like the 4th order Runge-Kutta method with a fixed step.

More than one choice of g(x, y, u) are again possible, to mention some:

(1) g = f(x, y, u) : In this case the third equation of (9) implies u = η + y1
obtained through simple integration.

(2) g = u
y : With this choice the second equation of (9) simplifies and leads

to y = y0e
η reducing the system into two equations to be solved for x(η)

and u(η).

(3) g = (1 + |u|m + |f |m)
1
m : If m = 2, this transformation corresponds to

the arc-length transformation.

We now consider some numerical examples:
Example 4: Consider the example given by (8)

y′′ = βnyn−1y′, x > 0, y(0) = α, y′(0) = αnβ.

Using g = u
y leads to the system

dx

dη
=

y

u
,
dy

dη
= y,

du

dη
=

β2ny2n

u
, η > 0

x(0) = 0, y(0) = α, u(0) = αnβ.

Its solution is given as

x =
1− e−(n−1)η

β (n− 1)αn−1
, y = αeη, u = βαnenη.

The numerical solution for 2 cases with α = 1, 2, β = 1, n = 2 is given in Figure
7.

Example 5: For the same previous example but with g = 1 + |f |+ |u| , the
system to be solved is

dx

dη
=

1

1 + |βnyn−1u|+ |u|
,

dy

dη
=

u

1 + |βnyn−1u|+ |u|
,

du

dη
=

βnyn−1u

1 + |βnyn−1u|+ |u|
, η > 0

x(0) = 0, y(0) = α, u(0) = αnβ.

and the results obtained are given in Figure 8.
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Figure 7. (A): The solutions u(η), x(η) and y(η).
(B): The exact (solid) and computed (dots)of the solutions

x(η) against y(η).
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Figure 8. (A): The solutions u(η), x(η) and y(η).
(B): The exact (solid) and computed (dots) of the solutions

x(η) against y(η).

5. Conclusion

First and second order Cauchy differential equations with blow-up solutions
were considered. Through some differential and non-local transformation we
were able to produce a parameterized system without the singularity due to
the blow-up solution. This allowed us a standard initial value method like the
4th order Runge-Kutta method to compute the solution without difficulties or
errors. The suggested transformations compete well with other transformations.
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