TOTAL COLORING OF MIDDLE GRAPH OF CERTAIN SNAKE GRAPH FAMILIES

A. PUNITHA AND G. JAYARAMAN*

Abstract

A total coloring of a graph G is an assignment of colors to both the vertices and edges of G, such that no two adjacent or incident vertices and edges of G are assigned the same colors. In this paper, we have discussed the total coloring of $M\left(T_{n}\right), M\left(D_{n}\right), M\left(D T_{n}\right), M\left(A T_{n}\right), M\left(D A\left(T_{n}\right)\right)$, $M\left(Q_{n}\right), M\left(A Q_{n}\right)$ and also obtained the total chromatic number of $M\left(T_{n}\right)$, $M\left(D_{n}\right), M\left(D T_{n}\right), M\left(A T_{n}\right), M\left(D A\left(T_{n}\right)\right), M\left(Q_{n}\right), M\left(A Q_{n}\right)$.

AMS Mathematics Subject Classification : 05C15. Key words and phrases : Total coloring, total chromatic number, middle graph, triangular snake, quadrilateral snake.

1. Introduction

All graphs consider here are finite, simple and undirected graphs. Let $G=$ $(V(G), E(G))$ be a graph with vertex set $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G})$ respectively. A coloring of a graph G is an assignment of colors to the vertices or edges or both. A vertex-coloring(edge coloring) is called a proper coloring if no two adjacent vertices or edges receive the same colors. A total coloring of G is a function $f: V(G) \cup E(G) \rightarrow C$, where C is the set of colors to satisfies the following conditions.
i) no two adjacent vertices receive the same colors
ii) no two adjacent edges receive the same colors
iii) no edges and its incident vertices receive the same colors

Bezhad [1] and Vizing [11] introduced the concept of total coloring. Also, they have proposed the conjecture for every simple graph G has $\Delta(G)+1 \leq$ $\chi^{\prime \prime}(G) \leq \Delta(G)+2$, where $\Delta(G)$ is the maximum degree of G. This conjecture is known as the Total Coloring Conjecture (TCC). Bezhad et al.[2] computed the total chromatic number of complete graphs. Rosenfeld[9] and Vijayaditya[10]

[^0]examined the TCC, for any graph G with maximum degree ≤ 3 and Kostochka [7] for maximum degree ≤ 5. In Borodin[4] verified the Total Coloring Conjecture (TCC) for maximum degree ≥ 9 in planar graphs. Jayaraman et al.[5] proved that the total chromatic number of double star graph families. Jayaraman et al.[6] proved that the total coloring of middle, total graph of bistar, double wheel and double crown graph.

The Middle graph [6] of a graph G is formed by subdividing each edge exactly once and connecting these newly obtained vertices of adjacent edges of G. A Triangular snake graph $T_{n}[8]$ is obtained from the path by replacing every K_{2} by C_{3}. A Double triangular snake $D T_{n}[8]$ consists of two triangular snakes that have a common path. A Diamond triangular snake graph $D_{n}[8]$ is obtained from a path by replacing every K_{2} by $2 C_{3}$. An Alternate triangular snake $A T_{n}$ [8] is obtained from a path by replacing every K_{2} by C_{3} alternatively. A Double alternate triangular snake $D A T_{n}[8]$ consists of two alternate triangular snakes that have a common path. A Quadrilateral snake Q_{n} is obtained from a path by replacing every edge by a cycle C_{4}. An Alternate quadrilateral snake $A Q_{n}$ is obtained from a path by replacing every alternate edge by a cycle C_{4}.

2. Main results

Theorem 2.1. Let $M\left(T_{n}\right)$ be the middle graph of triangular snake graph, then $\chi^{\prime \prime}\left(M\left(T_{n}\right)\right)=9$.

Proof. Let $V\left(M\left(T_{n}\right)\right)=\left\{u_{i} ; x_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}: 1 \leq i \leq n+1\right\} \cup\left\{y_{i}: 1 \leq i \leq\right.$ $2 n\}$ and $E\left(M\left(T_{n}\right)\right)=\left\{u_{i} y_{i} ; u_{i} y_{2 i} ; v_{i} y_{2 i-1} ; v_{i+1} y_{2 i} ; x_{i} y_{2 i-1} ; x_{i} y_{2 i} ; v_{i} x_{i} ; x_{i} v_{i+1}\right.$: $1 \leq i \leq n\} \cup\left\{x_{i} y_{2 i+1} ; x_{i+1} y_{2 i} ; x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{y_{i} y_{i+1}: 1 \leq i \leq 2 n-1\right\}$. Define a total coloring $f: V\left(M\left(T_{n}\right)\right) \cup E\left(M\left(T_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 9\}$ as follows:

Figure 1. Total coloring for $M\left(T_{5}\right)$

The assigning of colors to each vertices and edges as follows:

For $1 \leq i \leq n$

$$
\begin{gathered}
f\left(u_{i}\right)=3 ; \\
f\left(x_{i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
1, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(u_{i} y_{i}\right)=2 ; f\left(u_{i} y_{2 i}\right)=9 ; f\left(v_{i} y_{2 i-1}\right)=7 ; f\left(v_{i+1} y_{2 i}\right)=f\left(x_{i} y_{2 i-1}\right)=8 ; \\
f\left(x_{i} y_{2 i}\right)=7 ; f\left(v_{i} x_{i}\right)=5 ; f\left(x_{i} v_{i+1}\right)=6
\end{gathered}
$$

For $1 \leq i \leq n+1$

$$
f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\ 3, & \text { if } i \equiv 2(\bmod 3) \\ 2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

For $1 \leq i \leq n-1$

$$
\begin{gathered}
f\left(x_{i} y_{2 i+1}\right)=9 ; f\left(x_{3 i-1} y_{6 i-4}\right)=2 ; f\left(x_{3 i} y_{6 i-2}\right)=2 ; f\left(x_{3 i+1} y_{6 i}\right)=4 \\
f\left(x_{i} x_{i+1}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\
4, & \text { if } i \equiv 2(\bmod 3) \\
1, & \text { if } i \equiv 0(\bmod 3)\end{cases}
\end{gathered}
$$

For $1 \leq i \leq 2 n-1$

$$
f\left(y_{i} y_{i+1}\right)= \begin{cases}3, & \text { if } i \text { is odd } \\ 1, & \text { if } i \text { is even }\end{cases}
$$

For $1 \leq i \leq 2 n$

$$
f\left(y_{i}\right)= \begin{cases}4, & \text { if } i \text { is odd } \\ 5, & \text { if } i \text { is even }\end{cases}
$$

Hence f is a total coloring of $M\left(T_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(T_{n}\right)\right) \leq 9$. By conjecture, $\chi^{\prime \prime}\left(M\left(T_{n}\right)\right) \geq \Delta\left(M\left(T_{n}\right)\right)+1=8+1 \geq 9$ and $\chi^{\prime \prime}\left(M\left(T_{n}\right)\right)=9$.

Theorem 2.2. Let $M\left(D T_{n}\right)$ be the middle graph of double triangular snake, then $\chi^{\prime \prime}\left(M\left(D T_{n}\right)\right)=13$.

$$
\begin{aligned}
& \text { Proof. Let } V\left(M\left(D T_{n}\right)\right)=\left\{\begin{array}{l}
\left\{u_{i} ; x_{i} ; z_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} ; y_{i}: 1 \leq i \leq 2 n\right\} \cup \\
\left\{w_{i}: 1 \leq i \leq n+1\right\}
\end{array}\right. \text { and } \\
& E\left(M\left(D T_{n}\right)\right)=\left\{\begin{array}{l}
\left\{u_{i} v_{2 i-1} ; u_{i} v_{2 i} ; v_{2 i-1} w_{i} ; v_{2 i} x_{i} ; v_{2 i-1} x_{i} ; v_{2 i} w_{2 i} ; w_{i} x_{i} ; x_{i} w_{i+1} ; v_{i} y_{i} ;\right. \\
\left.w_{i} y_{2 i-1} ; x_{i} y_{2 i} ; y_{2 i-1} z_{i} ; z_{i} y_{2 i} ; x_{3 i} y_{6 i-1} ; w_{3 i+1} y_{6 i}: 1 \leq i \leq n\right\} \cup \\
\left\{x_{i} v_{2 i+1} ; x_{2 i} v_{2 i} ; x_{i} x_{i+1} ; x_{i} y_{2 i+1} ; x_{i+1} y_{2 i} ; x_{3 i-1} y_{6 i-3} ; x_{3 i-2} y_{6 i-5} ;\right. \\
\left.w_{3 i-1} y_{6 i-4} ; w_{3 i} y_{6 i-2}: 1 \leq i \leq n-1\right\} \cup\left\{x_{1} y_{1}\right\} \cup \\
\left\{v_{i} v_{i+1} ; y_{i} y_{i+1}: 1 \leq i \leq 2 n-1\right\}
\end{array}\right.
\end{aligned}
$$

Figure 2. Total coloring for $M\left(D T_{5}\right)$

Define a total coloring $f: V\left(M\left(D T_{n}\right)\right) \cup E\left(M\left(D T_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 13\}$ as follows: The assigning of colors to each vertices and edges as follows: For $1 \leq i \leq n$

$$
\begin{gathered}
f\left(u_{i}\right)=9 \\
f\left(x_{i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
1, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(w_{i} x_{i}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
4, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(x_{i} w_{i+1}\right)= \begin{cases}4, & \text { if } i \equiv 1(\bmod 3) \\
3, & \text { if } i \equiv 2(\bmod 3) \\
2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
\end{gathered}
$$

$$
f\left(v_{i} y_{i}\right)=\left\{\begin{array}{lll}
8, & \text { if } i & \text { is odd } \\
9, & \text { if } i & \text { is even }
\end{array}\right.
$$

$$
\begin{gathered}
f\left(z_{i}\right)=9 ; f\left(u_{i} v_{2 i-1}\right)=3 ; f\left(u_{i} v_{2 i}\right)=4 ; f\left(v_{2 i-1} w_{i}\right)=7 ; \\
f\left(v_{2 i} x_{i}\right)=7 ; f\left(v_{2 i-1} x_{i}\right)=6 ; f\left(v_{2 i} w_{2 i}\right)=6 ; f\left(w_{i} y_{2 i-1}\right)=5 ; \\
f\left(x_{i} y_{2 i}\right)=5 ; f\left(y_{2 i-1} z_{i}\right)=3 ; f\left(z_{i} y_{2 i}\right)=7 ; f\left(w_{3 i+1} y_{6 i}\right)=4 ; f\left(x_{3 i} y_{6 i-1}\right)=1
\end{gathered}
$$

For $1 \leq i \leq n-1$

$$
\begin{gathered}
f\left(x_{i} v_{2 i+1}\right)=13 ; f\left(x_{2 i} v_{2 i}\right)=11 ; \\
f\left(x_{i} x_{i+1}\right)= \begin{cases}8, & \text { if } i \text { is odd } \\
9, & \text { if } i \text { is even }\end{cases} \\
f\left(x_{i} y_{2 i+1}\right)=12 ; f\left(x_{i+1} y_{2 i}\right)=10 ; f\left(x_{3 i-1} y_{6 i-3}\right)=4 ; \\
f\left(x_{3 i-2} y_{6 i-5}\right)=1 ; f\left(w_{3 i-1} y_{6 i-4}\right)=1 ; f\left(w_{3 i} y_{6 i-2}\right)=1
\end{gathered}
$$

For $1 \leq i \leq n+1$

$$
f\left(w_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\ 3, & \text { if } i \equiv 2(\bmod 3) \\ 2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

For $1 \leq i \leq 2 n-1$

$$
\begin{aligned}
& f\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{lll}
1, & \text { if } i \text { is odd } \\
2, & \text { if } i \text { is even }
\end{array}\right. \\
& f\left(y_{i} y_{i+1}\right)=\left\{\begin{array}{lll}
2, & \text { if } i \text { is odd } \\
6, & \text { if } i \text { is even }
\end{array}\right.
\end{aligned}
$$

For $1 \leq i \leq 2 n$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
4, & \text { if } i & \text { is odd } \\
5, & \text { if } i & \text { is even }
\end{array}\right. \\
& f\left(y_{i}\right)=\left\{\begin{array}{lll}
7, & \text { if } i \text { is odd } \\
8, & \text { if } i & \text { is even }
\end{array}\right.
\end{aligned}
$$

Hence f is a total coloring of $M\left(D T_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(D T_{n}\right)\right) \leq 13$. By conjecture, $\chi^{\prime \prime}\left(M\left(D T_{n}\right)\right) \geq \Delta\left(M\left(D T_{n}\right)\right)+1=12+1 \geq 13$ and $\chi^{\prime \prime}\left(M\left(D T_{n}\right)\right)=$ 13.

Theorem 2.3. Let $M\left(D_{n}\right)$ be the middle graph of diamond triangular snake, then $\chi^{\prime \prime}\left(M\left(D_{n}\right)\right)=7$.
Proof. Let $V\left(M\left(D_{n}\right)\right)=\left\{\begin{array}{l}\left\{u_{i} ; y_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} ; x_{i}: 1 \leq i \leq 2 n\right\} \cup \\ \left\{w_{i}: 1 \leq i \leq n+1\right\}\end{array}\right.$ and
$E\left(M\left(D_{n}\right)\right)=\left\{\begin{array}{l}\left\{u_{i} v_{i} ; u_{i} v_{i+1} ; w_{i} v_{2 i-1} ; w_{i+1} v_{2 i} ; v_{2 i-1} x_{2 i-1} ; v_{2 i} x_{2 i} ; w_{i} x_{i} ; x_{2 i} w_{i+1} ;\right. \\ \left.y_{i} x_{2 i-1} ; y_{i} x_{2 i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} ; x_{i} x_{i+1}: 1 \leq i \leq 2 n\right\} \cup \\ \left\{x_{2 i} v_{2 i+1} ; v_{2 i} x_{2 i+1}: 1 \leq i \leq n-1\right\}\end{array}\right.$
Define a total coloring $f: V\left(M\left(D_{n}\right)\right) \cup E\left(M\left(D_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 7\}$ as follows:

Figure 3. Total coloring for $M\left(D_{5}\right)$
The assigning of colors to each vertices and edges as follows:
For $1 \leq i \leq n$

$$
\begin{gathered}
f\left(u_{i}\right)=1 ; f\left(y_{i}\right)=2 ; f\left(u_{i} v_{2 i-1}\right)=3 ; f\left(u_{i} v_{2 i}\right)=2 ; f\left(w_{i} v_{2 i-1}\right)=7 \\
f\left(w_{i+1} v_{2 i}\right)=3 ; f\left(v_{2 i-1} x_{2 i-1}\right)=5 ; f\left(v_{2 i} x_{2 i}\right)=7 ; f\left(w_{i} x_{2 i-1}\right)=1 \\
f\left(x_{2 i} w_{i+1}\right)=5 ; f\left(y_{i} x_{2 i-1}\right)=3 ; f\left(y_{i} x_{2 i}\right)=1
\end{gathered}
$$

For $1 \leq i \leq 2 n$

$$
\left.\begin{array}{c}
f\left(x_{i}\right)=\left\{\begin{array}{llll}
7, & \text { if } i & \text { is odd } \\
3, & \text { if } i & \text { is even }
\end{array}\right. \\
f\left(v_{i}\right)=\left\{\begin{array}{lll}
2, & \text { if } i & \text { is odd } \\
5, & \text { if } & i
\end{array}\right. \text { is even }
\end{array}\right\} \begin{array}{llll}
4, & \text { if } i & \text { is odd } \\
1, & \text { if } i & \text { is even }
\end{array}
$$

$$
f\left(x_{i} x_{i+1}\right)= \begin{cases}4, & \text { if } i \text { is odd } \\ 2, & \text { if } i \text { is even }\end{cases}
$$

For $1 \leq i \leq n-1$

$$
f\left(x_{2 i} v_{2 i+1}\right)=6 ; f\left(v_{2 i} x_{2 i+1}\right)=6
$$

For $1 \leq i \leq n+1$

$$
f\left(w_{i}\right)=4
$$

Hence f is a total coloring of $M\left(D_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(D_{n}\right)\right) \leq 7$. By conjecture, $\chi^{\prime \prime}\left(M\left(D_{n}\right)\right) \geq \Delta\left(M\left(D_{n}\right)\right)+1=6+1 \geq 7$ and $\chi^{\prime \prime}\left(M\left(D_{n}\right)\right)=7$.

Theorem 2.4. Let $M\left(A T_{n}\right)$ be the middle graph of alternate triangular snake, then $\chi^{\prime \prime}\left(M\left(A T_{n}\right)\right)=7$.

Proof. Let $V\left(M\left(A T_{n}\right)\right)=\left\{v_{i} ; w_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i}: 1 \leq\right.$ $\left.i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $E\left(M\left(A T_{n}\right)\right)=\left\{w_{i} u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} u_{i} ; u_{i} v_{i+1} ; u_{i} w_{i+1}: 1 \leq i \leq\right.$
$n-1\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{x_{i} w_{2 i-1} ; x_{i} w_{2 i} ; w_{2 i-1} w_{2 i} ; v_{2 i-1} w_{2 i-1} ; v_{2 i} w_{2 i}:\right.$ $\left.1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
Define a total coloring $f: V\left(M\left(A T_{n}\right)\right) \cup E\left(M\left(A T_{n}\right)\right) \rightarrow\{1,2, \ldots, 7\}$ as follows.

Figure 4. Total coloring for $M\left(A T_{6}\right)$

The assigning of colors to each vertices and edges as follows:
For $1 \leq i \leq n$

$$
\begin{gathered}
f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(w_{i}\right)= \begin{cases}4, & \text { if } i \text { is odd } \\
5, & \text { if } i \text { is even }\end{cases} \\
f\left(w_{i} u_{i}\right)=6
\end{gathered}
$$

For $1 \leq i \leq n-1$

$$
\begin{gathered}
f\left(u_{i}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\
1, & \text { if } i \equiv 2(\bmod 3) \\
2, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(v_{i} u_{i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
3, & \text { if } i \equiv 2(\bmod 3) \\
1, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(u_{i} v_{i+1}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(u_{i} w_{i+1}\right)=7
\end{gathered}
$$

For $1 \leq i \leq n-2$

$$
f\left(u_{i} u_{i+1}\right)= \begin{cases}5, & \text { if } i \text { is odd } \\ 4, & \text { if } i \text { is even }\end{cases}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$

$$
\begin{gathered}
f\left(x_{i}\right)=3 ; f\left(x_{i} w_{2 i-1}\right)=1 ; f\left(x_{i} w_{2 i}\right)=2 \\
f\left(w_{2 i-1} w_{2 i}\right)=3 ; f\left(v_{2 i-1} w_{2 i-1}\right)=5 ; f\left(v_{2 i} w_{2 i}\right)=4
\end{gathered}
$$

Hence f is a total coloring of $M\left(A T_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(A T_{n}\right)\right) \leq 7$. By conjecture, $\chi^{\prime \prime}\left(M\left(A T_{n}\right)\right) \geq \Delta\left(M\left(A T_{n}\right)\right)+1=6+1 \geq 7$ and $\chi^{\prime \prime}\left(M\left(A T_{n}\right)\right)=$ 7.

Theorem 2.5. Let $M\left(D A\left(T_{n}\right)\right)$ be the middle graph of double alternate triangular snake, then $\chi^{\prime \prime}\left(M\left(D A\left(T_{n}\right)\right)=9\right.$.

Proof. Let $V\left(M\left(D A\left(T_{n}\right)\right)=\left\{v_{i} ; w_{i} ; y_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i}: 1 \leq i \leq n-\right.\right.$ $1\} \cup\left\{z_{i}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and $E\left(M\left(D A\left(T_{n}\right)\right)=\left\{v_{i} x_{i} ; v_{i} w_{i} ; v_{i} y_{i} ; w_{i} y_{i}: 1 \leq i \leq\right.\right.$ $n\} \cup\left\{w_{i} x_{i} ; x_{i} w_{i+1} ; x_{i} v_{i+1} ; x_{i} y_{i} ; x_{i} y_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq\right.$ $n-2\} \cup\left\{u_{i} v_{2 i-1} ; u_{i} v_{2 i} ; v_{2 i-1} v_{2 i} ; y_{2 i-1} z_{i} ; z_{i} y_{2 i} ; y_{2 i-1} y_{2 i}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
Define a total coloring $f: V\left(M\left(D A\left(T_{n}\right)\right) \cup E\left(M\left(D A\left(T_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 9\}\right.\right.$ as follows. The assigning of colors to each vertices and edges as follows:
For $1 \leq i \leq n$

$$
f\left(v_{i}\right)= \begin{cases}8, & \text { if } i \text { is odd } \\ 4, & \text { if } i \text { is even }\end{cases}
$$

Figure 5. Total coloring for $M\left(D A\left(T_{6}\right)\right)$

$$
\begin{gathered}
f\left(w_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\
3, & \text { if } i \equiv 2(\bmod 3) \\
2, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(y_{i}\right)= \begin{cases}4, & \text { if } i \text { is odd, except } i=6 i-1 \\
9, & \text { if } i \text { is even } \\
5, & \text { if } i=6 i-1\end{cases} \\
f\left(v_{i} x_{i}\right)=5 ; f\left(v_{i} w_{i}\right)=7 ; \\
f\left(v_{i} y_{i}\right)= \begin{cases}6, & \text { if } i \text { is odd } \\
8, & \text { if } i \text { is even }\end{cases} \\
f\left(w_{i} y_{i}\right)=\left\{\begin{array}{lll}
8, & \text { if } i \text { is odd } \\
5, & \text { if } i \text { is even }
\end{array}\right.
\end{gathered}
$$

For $1 \leq i \leq n-1$

$$
\begin{gathered}
f\left(x_{i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
1, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(w_{i} x_{i}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
4, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(x_{i} w_{i+1}\right)= \begin{cases}4, & \text { if } i \equiv 1(\bmod 3) \\
3, & \text { if } i \equiv 2(\bmod 3) \\
2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
\end{gathered}
$$

$$
\begin{gathered}
f\left(x_{i} v_{i+1}\right)= \begin{cases}6, & \text { if } i \text { is odd } \\
4, & \text { if } i \text { is even }\end{cases} \\
f\left(x_{i} y_{i}\right)= \begin{cases}1, & \text { if } i \text { is odd, except } i=6 i-1 \\
6, & \text { if } i \text { is even } \\
4, & \text { if } i=6 i-1 \\
f\left(x_{i} y_{i+1}\right)=7\end{cases}
\end{gathered}
$$

For $1 \leq i \leq n-2$

$$
f\left(x_{i} x_{i+1}\right)= \begin{cases}8, & \text { if } i \text { is odd } \\ 9, & \text { if } i \text { is even }\end{cases}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$

$$
\begin{aligned}
f\left(u_{i}\right) & =9 ; f\left(z_{i}\right)=8 ; f\left(u_{i} v_{2 i-1}\right)=3 ; f\left(u_{i} v_{2 i}\right)=2 \\
f\left(v_{2 i-1} v_{2 i}\right) & =9 ; f\left(y_{2 i-1} z_{i}\right)=3 ; f\left(z_{i} y_{2 i}\right)=1 ; f\left(y_{2 i-1} y_{2 i}\right)=2
\end{aligned}
$$

Hence f is a total coloring of $\left(M\left(D A\left(T_{n}\right)\right)\right.$ and therefore $\chi^{\prime \prime}\left(M\left(D A\left(T_{n}\right)\right) \leq\right.$ 9. By conjecture, $\chi^{\prime \prime}\left(M\left(D A\left(T_{n}\right)\right) \geq \Delta\left(M\left(D A\left(T_{n}\right)\right)+1=8+1 \geq 9\right.\right.$ and $\chi^{\prime \prime}\left(M\left(D A\left(T_{n}\right)\right)=9\right.$.

Theorem 2.6. Let $M\left(Q S_{n}\right)$ be the middle graph of quadrilateral snake, then $\chi^{\prime \prime}\left(M\left(Q S_{n}\right)\right)=9$.

Proof. Let $V\left(M\left(Q S_{n}\right)\right)=\left\{u_{i} ; y_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i} ; x_{i}: 1 \leq i \leq 2 n\right\} \cup\left\{v_{i}: 1 \leq\right.$ $i \leq n+1\}$ and $E\left(M\left(Q S_{n}\right)\right)=\left\{v_{i} u_{i} ; u_{i} v_{i+1} ; v_{i} w_{2 i-1} ; v_{i+1} w_{2 i} ; u_{i} w_{2 i-1} ; u_{i} w_{2 i}\right.$;
$\left.y_{i} w_{2 i-1} ; y_{i} w_{2 i} ; x_{2 i-1} y_{i} ; y_{i} x_{2 i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1} ; u_{i} w_{2 i+1} ; w_{2 i} w_{2 i+1} ; w_{2 i} u_{i+1}:\right.$ $1 \leq i \leq n-1\} \cup\left\{x_{i} w_{i}: 1 \leq i \leq 2 n\right\}$.
Define a total coloring $f: V\left(M\left(Q S_{n}\right)\right) \cup E V\left(M\left(Q S_{n}\right)\right) \rightarrow\{1,2, \ldots, 9\}$ as follows. The assigning of colors to each vertices and edges as follows:
For $1 \leq i \leq n$

Figure 6. Total coloring for $M\left(Q S_{5}\right)$

$$
\begin{gathered}
f\left(u_{i}\right)=f\left(v_{i+1} w_{2 i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
1, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(y_{i}\right)=5 ; f\left(v_{i} u_{i}\right)=5 ; f\left(u_{i} v_{i+1}\right)=4 ; f\left(v_{i} w_{2 i-1}\right)=6 ; \\
f\left(u_{i} w_{2 i-1}\right)=8 ; f\left(u_{i} w_{2 i}\right)=9 ; f\left(y_{i} w_{2 i-1}\right)=9 ; \\
f\left(y_{i} w_{2 i}\right)=8 ; f\left(x_{2 i-1} y_{i}\right)=3 ; f\left(y_{i} x_{2 i}\right)=4
\end{gathered}
$$

For $1 \leq i \leq n-1$

$$
\begin{gathered}
f\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}
6, & \text { if } i \text { is odd } \\
7, & \text { if } i \text { is even }
\end{array}\right. \\
f\left(w_{2 i} u_{i+1}\right)= \begin{cases}3, & \text { if } i \text { is odd } \\
2, & \text { if } i \text { is even }\end{cases} \\
f\left(u_{i} w_{2 i+1}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } \\
1, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(w_{2 i} w_{2 i+1}\right)=5
\end{gathered}
$$

For $1 \leq i \leq 2 n$

$$
\begin{gathered}
f\left(w_{i}\right)=\left\{\begin{array}{lll}
4, & \text { if } i & \text { is odd } \\
6, & \text { if } i & \text { is even }
\end{array}\right. \\
f\left(x_{i}\right)=\left\{\begin{array}{lll}
1, & \text { if } i \text { is odd } \\
3, & \text { if } i \text { is even } \\
f\left(x_{i} w_{i}\right)=7
\end{array}\right.
\end{gathered}
$$

For $1 \leq i \leq n+1$

$$
f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\ 3, & \text { if } i \equiv 2(\bmod 3) \\ 2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

Hence f is a total coloring of $M\left(Q S_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(Q S_{n}\right)\right) \leq 9$. By conjecture, $\chi^{\prime \prime}\left(M\left(Q S_{n}\right)\right) \geq \Delta\left(M\left(Q S_{n}\right)\right)+1=8+1 \geq 9$ and $\chi^{\prime \prime}\left(M\left(Q S_{n}\right)\right)=$ 9.

Theorem 2.7. Let $M\left(A Q_{n}\right)$ be the middle graph of alternate quadrilateral snake, then $\chi^{\prime \prime}\left(M\left(A Q_{n}\right)\right)=7$.

Proof. Let $V\left(M\left(A Q_{n}\right)\right)=\left\{v_{i} ; w_{i} ; x_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n-1\right\} \cup\left\{y_{i}\right.$: $\left.1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$ and
$E\left(M\left(A Q_{n}\right)\right)=\left\{x_{i} w_{i} ; w_{i} v_{i} ; w_{i} u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} w_{i+1} ; v_{i} u_{i} ; u_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-2\right\} \cup\left\{x_{2 i-1} y_{i} ; y_{i} x_{2 i} ; w_{2 i-1} y_{i} ; y_{i} w_{2 i}: 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Define a total coloring $f: V\left(M\left(A Q_{n}\right)\right) \cup E V\left(M\left(A Q_{n}\right)\right) \rightarrow\{1,2, \ldots, 7\}$ as follows. The assigning of colors to each vertices and edges as follows:

Figure 7. Total coloring for $M\left(A Q_{6}\right)$

For $1 \leq i \leq n$

$$
\begin{aligned}
& f\left(v_{i}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
5, & \text { if } i & \text { is odd } \\
4, & \text { if } i & \text { is even }
\end{array}\right. \\
& f\left(x_{i}\right)= \begin{cases}1, & \text { if } i \text { is odd } \\
3, & \text { if } i \text { is even }\end{cases} \\
& f\left(x_{i} w_{i}\right)= \begin{cases}2, & \text { if } i \text { is odd } \\
1, & \text { if } i \text { is even }\end{cases} \\
& f\left(w_{i} v_{i}\right)= \begin{cases}4, & \text { if } i \text { is odd } \\
5, & \text { if } i \text { is even }\end{cases} \\
& f\left(w_{i} u_{i}\right)=6
\end{aligned}
$$

For $1 \leq i \leq n-1$

$$
f\left(u_{i}\right)= \begin{cases}3, & \text { if } i \equiv 1(\bmod 3) \\ 1, & \text { if } i \equiv 2(\bmod 3) \\ 2, & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

$$
\begin{gathered}
f\left(v_{i} u_{i}\right)= \begin{cases}2, & \text { if } i \equiv 1(\bmod 3) \\
3, & \text { if } i \equiv 2(\bmod 3) \\
1, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(u_{i} v_{i+1}\right)= \begin{cases}1, & \text { if } i \equiv 1(\bmod 3) \\
2, & \text { if } i \equiv 2(\bmod 3) \\
3, & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
f\left(u_{i} w_{i+1}\right)=7
\end{gathered}
$$

For $1 \leq i \leq n-2$

$$
f\left(u_{i} u_{i+1}\right)= \begin{cases}4, & \text { if } i \text { is odd } \\ 5, & \text { if } i \text { is even }\end{cases}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$

$$
\begin{gathered}
f\left(y_{i}\right)=6 ; f\left(x_{2 i-1} y_{i}\right)=4 ; f\left(y_{i} x_{2 i}\right)=7 \\
f\left(w_{2 i-1} y_{i}\right)=3 ; f\left(y_{i} w_{2 i}\right)=2
\end{gathered}
$$

Hence f is a total coloring of $M\left(A Q_{n}\right)$ and therefore $\chi^{\prime \prime}\left(M\left(A Q_{n}\right)\right) \leq 7$. By conjecture, $\chi^{\prime \prime}\left(M\left(A Q_{n}\right)\right) \geq \Delta\left(M\left(A Q_{n}\right)\right)+1=6+1 \geq 7$ and $\chi^{\prime \prime}\left(M\left(A Q_{n}\right)\right)=$ 7.

Conflicts of interest : The authors declare no conflicts of interest.
Data availability : Not applicable

References

1. M. Bezhad, Graphs and their chromatic numbers, Doctoral Thesis, Michigan State University, 1965.
2. M. Behzad, G. Chartrand and J.K. Cooper, The color numbers of complete graphs, Journal London Math. Soc. 42 (1967), 226-228.
3. M. Behzad, A criterian for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), 679-681.
4. O.V. Borodin, On the total coloring planar graphs, J. Reine Angew Math. 394 (1989), 180-185.
5. G. Jayaraman and D. Muthuramakrishnan, Total Chromatic Number of Double Star Graph Families, Journal of Advanced Research in Dynamical and control system 10 (2018), 631635.
6. G. Jayaraman and D. Muthuramakrishnan, Total Coloring of Middle, Total graph of Bistar, Double wheel and Double Crown Graph, International Journal of Scientific Research and Review 7 (2018), 442-450.
7. A.V. Kostochka, The total coloring of a multigraph with maximal degree 4, Discrete Math. 17 (1989), 161-163.
8. R. Ponraj and S. Sathish Narayanan, Mean cordiality of some snake graphs, Palastine Journal of Mathematics 4 (2015), 439-445.
9. M. Rosanfeld, On the total colouring of certain graphs, Israel J. Math. 9 (1972), 396-402.
10. N. Vijayaditya, On total chromatic number of a graph, J. London Math Soc. (1971), 405408.
11. V.G. Vizing, Some unsolved problems in graph theory, Russian Mathematical Survey 23 (1968), 125-141.
A. Punitha received M.Sc. from University of Madras and pursuing Ph.D. at Vels Institute of Science, Technology and Advanced Studies(VISTAS). Her research interests is graph coloring.

Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies(VISTAS), Chennai 600117,Tamil Nadu, India.
e-mail: punithasokan@gmail.com
Dr. G. Jayaraman received Ph.D. from Bharathidasan University, Tiruchirappalli. Presently working as Assistant Professor of Mathematics, Vels Institute of Science, Technology and Advanced Studies(VISTAS). He has more than 12 years of teaching experience. His research interest is graph coloring.
Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai 600117,Tamil Nadu, India.
e-mail: jayaram07maths@gmail.com

[^0]: Received August 10, 2023. Revised November 3, 2023. Accepted November 29, 2023. * Corresponding author.
 (C) 2024 KSCAM.

