A NOTE ON VERTEX PAIR SUM k-ZERO RING LABELING

ANTONY SANOJ JEROME*, K.R. SANTHOSH KUMAR, T.J. RAJESH KUMAR

Abstract

Let $G=(V, E)$ be a graph with p-vertices and q-edges and let R° be a finite zero ring of order n. An injective function $f: V(G) \rightarrow$ $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$, where $r_{i} \in R^{\circ}$ is called vertex pair sum k-zero ring labeling, if it is possible to label the vertices $x \in V$ with distinct labels from R° such that each edge $e=u v$ is labeled with $f(e=u v)=[f(u)+f(v)]$ $(\bmod n)$ and the edge labels are distinct. A graph admits such labeling is called vertex pair sum k-zero ring graph. The minimum value of positive integer k for a graph G which admits a vertex pair sum k-zero ring labeling is called the vertex pair sum k-zero ring index denoted by $\psi_{p z}(G)$. In this paper, we defined the vertex pair sum k-zero ring labeling and applied to some graphs.

AMS Mathematics Subject Classification : 05C25, 05C78.
Key words and phrases : Vertex pair sum k-zero ring labeling, zero ring labeling, zero ring.

1. Introduction

Numerous fields rely heavily on the field of graph theory. One of the key areas of graph theory is Graph labeling. Graph labeling is an assignment of integers to vertices or edges, or both, under certain conditions. Labeled graphs are effective mathematical models for a variety of applications. In 1977, Bloom and Golomb studied the applications of graph labeling. They discussed the detailed applications of graph labeling in [1]. A study on Group S_{3} Cordial remainder labeling for path and cycle related graphs were done by A. Lourdusami,S. Jenifer Wency and F. Patrick [5]. For standard terminology of Graph theory, we used [4] and for all terminology regarding graph labeling, we follow [3].

[^0]In 2014, Acharya et al. [7] introduced zero ring labeling. Dela Rosa-Reynera [6] constructed optimal zero ring labelings for some classes of graphs. In [2],discussed the efficient zero ring labeling of graphs. R. Ponraj et al. [8] discussed about pair sum graphs. Motivated from these studies we introduced a new notion of vertex labeling for graphs, called vertex pair sum k-zero ring labeling, is realized by assigning distinct elements of a zero ring to the vertices of the graph such that the edges are labeled by the sum of the labels of the corresponding end vertices and are distinct. There are many interesting properties of zero ring mentioned in $[7,9]$. In this paper, we discussed the vertex pair sum k-zero ring labeling of path, cycle, star graph, comb and bull graph.

2. Preliminaries

Definition 2.1. Let R be a ring with additive identity 0 . If $x y=0$ for any $x, y \in R$ then R is a zero ring.

Here we used the zero ring $M_{2}^{\circ}(R)$. Let R be a finite ring of order n with additive identity 0 . We denote by $M_{2}^{\circ}(R)$ the set of all 2×2 matrices of the form $\left[\begin{array}{ll}p & -p \\ p & -p\end{array}\right], p \in R$.

It can be verified that $M_{2}^{\circ}(R)$ is a ring under matrix addition and matrix multiplication with additive identity $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Since for any $p, q \in R,\left[\begin{array}{ll}p & -p \\ p & -p\end{array}\right]\left[\begin{array}{ll}q & -q \\ q & -q\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], M_{2}^{\circ}(R)$ is a zero ring.
Since Z_{n} is a finite ring, it follows that $M_{2}^{\circ}\left(Z_{n}\right)$ is a zero ring. We use W_{i} to denote the matrix $\left[\begin{array}{ll}i & -i \\ i & -i\end{array}\right], i \in Z_{n}$.
Definition 2.2. Let $G=(V, E)$ be a graph with p vertices and q edges, and let R° be a finite zero ring of order n. An injective function f is called vertex pair sum k-zero ring labeling, if it is possible to label the vertices $x \in V$ with distinct labels from R° such that each edge $e=u v$ is labeled with $f(e=u v)=$ $[f(u)+f(v)](\bmod n)$ and the edge labels are distinct. A graph admits such labeling is called vertex pair sum k-zero ring graph.

The minimum value of positive integer k for a graph G which admits a vertex pair sum k-zero ring labeling is called the vertex pair sum k-zero ring index denoted by $\psi_{p z}(G)$.
Definition 2.3. The bull graph is a planar undirected graph with 5 vertices and 5 edges, in the form of a triangle with two disjoint pendant edges.

3. Main Results

Lemma 3.1. $\psi_{p z}(G) \geq|E|$, for any graph.
Proof. Let $\psi_{p z}(G)=n$ and $|E|=m$. If possible, let us assume that $\psi_{p z}(G)<m$. Take $W_{a_{1}}, W_{a_{2}}, \ldots, W_{a_{n}}$ as the vertex pair sum n-zero ring labeling.

Then the sums $W_{a_{i}}+W_{a_{j}}, i \neq j$, must be the distinct labels of edges.
If $\psi_{p z}(G)<m$, then there must be two same labels for distinct edges. So $\psi_{p z}(G) \geq|E|$.

Lemma 3.2. $\psi_{p z}(G) \geq|V|$, for any graph.
In this study, the zero ring that will be used in the vertex labelings is the zero ring $M_{2}^{\circ}\left(Z_{n}\right)$, the set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & -a \\ a & -a\end{array}\right], a \in Z_{n}$.

Theorem 3.1. Any path $P_{n}, n \geq 2$ is a vertex pair sum n-zero ring graph.
Proof. Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$. Edges are $u_{i} u_{i+1}$ for $i=1,2,3, \ldots,(n-$ 1).

Case (1): When n is even.
Define a function $f: V\left(P_{n}\right) \rightarrow M_{2}^{\circ}\left(Z_{n}\right)$ by

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
W_{\frac{i-2}{2}} & i & \text { is even } \\
W_{\frac{n+i-1}{2}} & i & \text { is odd }
\end{array}\right.
$$

The edge labels are as follows. $f\left(u_{i} u_{i+1}\right)=W_{\frac{n+2 i-2}{2}}$. Then the edge labels are distinct elements of $M_{2}^{\circ}\left(Z_{n}\right)$.
Case (2): When n is odd.
Define a function $f: V\left(P_{n}\right) \rightarrow M_{2}^{\circ}\left(Z_{n}\right)$ by $f\left(u_{i}\right)=W_{i-1}, 1 \leq i \leq n$.

$$
f\left(u_{i} u_{i+1}\right)=W_{2 i-1}, \quad 1 \leq i \leq(n-1)
$$

Then the edge labels are distinct elements of $M_{2}^{\circ}\left(Z_{n}\right)$. Here f is a vertex pair sum n-zero ring labeling. i.e. $\psi_{p z}\left(P_{n}\right) \leq n$.

By Lemma (3.2) $\psi_{p z}\left(P_{n}\right) \geq n$.
$\therefore \psi_{p z}\left(P_{n}\right)=n$.
Hence we can conclude that for all integers $n \geq 2, P_{n}$ is a vertex pair sum n-zero ring graph.

Illustration 3.1. A vertex pair sum 5-zero ring labeling of P_{5}.

Illustration 3.2. A vertex pair sum 22-zero ring labeling of P_{22}.

Corollary 3.1. The vertex pair sum k-zero ring index of path graph P_{n} is n. That is $\psi_{p z}\left(P_{n}\right)=n$.
Theorem 3.2. The cycles $C_{n}, n=2 m+1, m \in N$ are vertex pair sum k-zero ring graphs having $\psi_{p z}\left(C_{n}\right)=n$.
Proof. Let C_{n} be a cycle of length n such that $n=2 m+1, m \in N$.
Let the cycles be $u_{1} u_{2} u_{3} \ldots u_{n} u_{1}$. The edges are $u_{i} u_{i+1}, 1 \leq i \leq n$ and $u_{n} u_{1}$.
Define a function $f: V\left(C_{n}\right) \rightarrow M_{2}^{\circ}\left(Z_{n}\right)$ by $f\left(u_{i}\right)=W_{i-1}, 1 \leq i \leq n$.
The edge labels are

$$
f\left(u_{i} u_{i+1}\right)=W_{i-1}+W_{i}=W_{2 i-1}, \quad 1 \leq i \leq n-1
$$

and $f\left(u_{n} u_{1}\right)=W_{n-1}+W_{0}=W_{n-1}$.
Then we get the edge labels as $W_{0}, W_{1}, W_{2}, \ldots, W_{n-1}$. Therefore the cycles $C_{n}, n=2 m+1, m \in N$ are vertex pair sum k-zero ring graphs and $\psi_{p z}\left(C_{n}\right)=$ n.

Illustration 3.3. A vertex pair sum 7-zero ring labeling of C_{7} is shown below.

Corollary 3.2. A vertex pair sum k-zero ring index of cycle C_{n} is n for odd n.

Theorem 3.3. The cycle C_{n} is not a vertex pair sum n-zero ring graph when n is even.

Proof. Since n is even, take $n=2 m$. Suppose $C_{2 m}$ admits vertex pair sum $2 m$ zero ring labeling and let $W_{x_{0}}, W_{x_{1}}, \ldots, W_{x_{2 m-1}}$ be the vertex pair sum $2 m$-zero ring labeling. Note that in $W_{x_{i}}, i=0,1,2, \ldots, 2 m-1$, where x_{i} are members of $Z_{2 m}$.

Also, $W_{x_{i}}+W_{x_{j}}=W_{x_{i}+x_{j}}$. Therefore, the sums $x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{2 m-1}+$ x_{0} congruent modulo $2 m$.

Then we get

$$
\begin{aligned}
& x_{0}+x_{1} \equiv 0(\bmod 2 m) \\
& x_{1}+x_{2} \equiv 1(\bmod 2 m) \\
& \vdots \\
& x_{2 m-1}+x_{0} \equiv(2 m-1)(\bmod 2 m) \\
& \therefore x_{0}+x_{1}+x_{2}+\cdots+x_{2 m-1}+x_{0} \equiv(0+1+2+\cdots+(2 m-1))(\bmod 2 m) \\
& \Rightarrow 2\left(x_{0}+x_{1}+x_{2}+\cdots+x_{2 m-1}\right) \equiv(0+1+2+\cdots+(2 m-1))(\bmod 2 m) \\
& \Rightarrow 2 \equiv 0(\bmod 2 m)
\end{aligned}
$$

which is a contradiction. Hence the theorem.
Theorem 3.4. $\psi_{p z}\left(C_{n}\right)=n+1$, for n even.
Proof. Let $v_{1} v_{2} v_{3} \cdots v_{n} v_{1}$ be the cycle C_{n} of length n, where $n=2 m, m \in N$.
The edges are $v_{i} v_{i+1}, 1 \leq i \leq n$ and $v_{n} v_{1}$. There are five cases.
Case (i): When $n=4$

Case (ii): When $n=6$.

Case (iii): When $n=8$

Case (iv): When $n=4 k, k \geq 3$. Define a function $f: V\left(C_{n}\right) \rightarrow M_{2}^{\circ}\left(Z_{n+1}\right)$ as follows.

Set $f\left(v_{1}\right)=W_{1}, \quad f\left(v_{2}\right)=W_{2}$

$$
\begin{aligned}
& f\left(v_{i+1}\right)=W_{2 i}, \quad i=2,3, \ldots, \frac{n}{4} \\
& f\left(v_{\frac{n+8}{4}}\right)=W_{\frac{n+6}{2}} \\
& f\left(v_{\frac{n+8+4 i}{4}}\right)=W_{\frac{n+6+4 i}{2}}, \quad i=1,2, \ldots, \frac{n-8}{4} \\
& f\left(v_{\frac{n+2}{2}}\right)=W_{0} \\
& f\left(v_{\frac{n+2+2 i}{}}\right)=W_{n-2 i+2}, \quad i=1,2, \ldots, \frac{n}{4} \\
& f\left(v_{\frac{3 n+8}{4}}\right)=W_{\frac{n-2}{2}} \\
& f\left(v_{\frac{3 n+8+4 i}{4}}\right)=W_{\frac{n-2}{2}-2 i}, \quad i=1,2, \ldots, \frac{n-8}{4} .
\end{aligned}
$$

The we get the vertex labels as $W_{0}, W_{1}, W_{2}, \ldots, W_{n-1}, W_{n}$ except the member $W_{\frac{n+2}{2}}$.
Case (v): When $n=4 k+2, k \geq 2$. Define a function $f: V\left(C_{n}\right) \rightarrow M_{2}^{\circ}\left(Z_{n+1}\right)$ as follows:

$$
\begin{aligned}
& \text { Set } \quad f\left(v_{1}\right)=W_{1}, \quad f\left(v_{2}\right)=W_{2}, \quad f\left(v_{i+1}\right)=W_{2 i}, \quad i=2,3, \ldots,\left\lceil\frac{n}{4}\right\rceil-1 \\
& f\left(v_{\left\lceil\frac{n}{4}\right\rceil+1}\right)=W_{2\left\lceil\frac{n}{4}\right\rceil+1} \\
& f\left(v_{\left\lceil\frac{n}{4}\right\rceil+1+i}\right)=W_{2\left\lceil\frac{n}{4}\right\rceil+1+2 i}, \quad i=1,2, \ldots, \frac{n}{2}-\left\lceil\frac{n}{4}\right\rceil-1
\end{aligned}
$$

$$
f\left(\frac{v_{n+2}}{2}\right)=W_{0}
$$

$$
f\left(\frac{v_{n+2+2 i}}{2}\right)=W_{n-2 i+2}, \quad i=1,2, \ldots,\left\lfloor\frac{n}{4}\right\rfloor
$$

$$
f\left(v_{\frac{n}{2}+\left\lfloor\frac{n}{4}\right\rfloor+2}\right)=W_{n-2\left\lfloor\frac{n}{4}\right\rfloor-1}
$$

$$
f\left(v_{\frac{n}{2}+\left\lfloor\frac{n}{4}\right\rfloor+2+i}\right)=W_{n-2\left\lfloor\frac{n}{4}\right\rfloor-1-2 i}, \quad i=1,2, \ldots, \frac{n-6}{4} .
$$

Then we get the vertex labels as $W_{0}, W_{1}, W_{2}, \ldots, W_{n-1}, W_{n}$ except the member $W_{\frac{n+2}{2}}$. From the above two cases f allows the required labeling.

Illustration 3.4. Vertex pair sum 13-zero ring labeling of C_{12} using $M_{2}^{\circ}\left(Z_{13}\right)$.

Theorem 3.5. A star graph S_{n} has a vertex pair sum k-zero ring labeling with vertex pair sum k-zero ring index n.
Proof. Let G be the star graph S_{n}. Label the central vertex u_{1} as W_{o}. The other $(n-1)$ vertices $u_{2}, u_{3}, \ldots u_{n}$ are labeled as $W_{1}, W_{2}, \ldots, W_{n-1}$.
i.e., $f\left(u_{i}\right)=W_{i-1}, 1 \leq i \leq n$. Then the edge labels are $f\left(u_{1} u_{i}\right)=W_{0}+$ $W_{i-1}=W_{i-1}$, where $2 \leq i \leq n$.

Then we get the distinct edge labels as $W_{1}, W_{2}, W_{3}, \ldots, W_{n-1}$. Hence star graph admits pair sum zero ring labeling and $\psi_{p z}\left(S_{n}\right)=n$.
Illustration 3.5. Vertex pair sum 9-zero ring labeling of S_{9} using $M_{2}^{\circ}\left(Z_{9}\right)$.

Theorem 3.6. Any comb graph $P_{n} \odot K_{1}$ is a vertex pair sum k-zero ring graph having vertex pair sum k-zero index $2 n$.

Proof. Let $P_{n} \odot K_{1}$ be a comb obtained from a path $P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining a vertex u_{i} to $v_{i}(1 \leq i \leq n)$.
Case (1): When n is even.
Define a function $f: V\left(P_{n} \odot K_{1}\right) \rightarrow M_{2}^{\circ}\left(Z_{2 n}\right)$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =W_{i-1}, 1 \leq i \leq n \\
f\left(v_{i}\right) & =W_{n+i-1}, 1 \leq i \leq n
\end{aligned}
$$

Edges are labeled by $f\left(u_{i} u_{i+1}\right)=W_{i-1}+W_{i}, 1 \leq i \leq n-1$.

$$
f\left(u_{i} v_{i}\right)=W_{i-1}+W_{n+i-1}, 1 \leq i \leq n .
$$

Then we get edge labels from all the distinct elements of $M_{2}^{\circ}\left(Z_{2 n}\right)$ except $W_{2 n-1}$.
Case (2): When n is odd
Define a function $f: V\left(P_{n} \odot K_{1}\right) \rightarrow M_{2}^{\circ}\left(Z_{2 n}\right)$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=W_{2 i-2}, & 1 \leq i \leq n \\
f\left(v_{i}\right)=W_{2 i-1}, & 1 \leq i \leq n
\end{array}
$$

Edges are labeled by

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & =W_{2 i-2},+W_{2 i} \quad 1 \leq i \leq(n-1) \\
f\left(u_{i} v_{i}\right) & =W_{2 i-2}+W_{2 i-1}, \quad 1 \leq i \leq n .
\end{aligned}
$$

Then we get edge labels from all the distinct elements of $M_{2}^{\circ}\left(Z_{2 n}\right)$ except $W_{2 n-2}$.
$\therefore P_{n} \odot K_{1}$ is pair sum zero ring graph and $\psi_{p z}\left(P_{n} \odot K_{1}\right)=2 n$.
Illustration 3.6. The vertex pair sum 12-zero ring labeling of comb obtained from $P_{6} \cdot K_{1}$ is given below.

Illustration 3.7. The vertex pair sum 14-zero ring labeling of comb obtained from $P_{7} \cdot K_{1}$ is given below.

Theorem 3.7. The bull graph admits vertex pair sum 5-zero ring labeling.
Proof. Define a function $f: V \rightarrow M_{2}^{\circ}\left(Z_{5}\right)$ by $f\left(v_{i}\right)=W_{i-1}, 1 \leq i \leq 5$.

From the definition it is clear that vertex pair sum k-zero ring index of bull graph is 5 .

4. Conclusion

In this paper, we defined vertex pair sum k-zero ring index and determined the same for the graphs such as path, cycle, star graph, comb graph and bull graph. Similar results can be obtained for other classes of graphs also. Here we are taking the finite zero ring $M_{2}{ }^{0}\left(Z_{n}\right)$. In future this study can be extended to other finite zero rings too.

Conflicts of interest : The authors declare no conflict of interest.
Data availability : Not applicable
Acknowledgments : The authors are thankful to the referee for the useful suggestions.

References

1. G.S. Bloom, S.W. Golomb, Application of numbered undirected graphs, Proc. IEEE 165 (1977), 562-70.
2. Dhenmar E. Chua, Francis Joseph H. Campena, Floresto A. Franco Jr., Efficient Zero ring labeling of graphs, European Journal of Pure and Applied Mathematics 13 (2020), 674-696.
3. J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb. 17 (2014). https://doi.org/10.37236/27
4. F. Harary, Graph Theory, Addison Wesley, Reading, M.A., 1969.
5. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} Cordial remainder labeling for path and cycle related graphs, J. Appl. Math.\& Informatics 39 (2021), 223-237.
6. Michelle Dela Rosa-Reynera, On Graphs of Minimum Zero ring index, De La Salle University, PhD thesis, August, 2018.
7. Mukti Acharya,Pranjali and Purnima Gupta, Zero ring labeling of graphs, Electronic Notes in Discrete Mathematics 48 (2015), 65-72.
8. R. Ponraj, J.V.X. Parthipan and R. Kala, A note on pair sum graphs, J. Scientific Research 3 (2011), 321-329.
9. Pranjali, A note on zero rings, Asian-European Journal of Mathematics 08 (2015), 1-10.

Antony Sanoj Jerome received M.Sc. Mathematics from Fatima Mata National College, Kollam; which is affiliated to the University of Kerala and M.Phil. in Mathematics from the Manonmaniam Sundaranar University, Tamilnadu, India. He is now pursuing Ph.D (Mathematics) at the University college which is affiliated to the University of Kerala, India. His research interests include Graph Theory and Graph Labeling.
Research Scholar, Department of Mathematics, University College, Thiruvananthapuram, Kerala, India. Mob: 9995772762.
e-mail: sanojjerome05@gmail.com
K.R. Santhosh Kumar is an Associate Professor of Mathematics, at the University College, Thiruvananthapuram, affiliated to University of Kerala, India. He received M.Sc. MPhil and Ph.D from University of Kerala. His major research area is Graph Theory and is mainly interested in Graph labeling, Algebraic Graph Theory and Domination in graphs. He has 23 years of teaching experience and has taught almost all core papers at post graduate level.
Department of Mathematics, University College, Thiruvananthapuram, Kerala, India.
e-mail: santhoshkumargwc@gmail.com
T.J. Rajesh Kumar received MSc, MPhil and PhD from University of Kerala. Since 2009 he has been at TKM College of Engineering affiliated to APJ Abdul Kalam Technological University, Kerala,India. His research interests include Graph Theory and Chemical Graph Theory.
Department of Mathematics, T.K.M. College of Engineering, Kerala, India.
e-mail: rajeshmaths@tkmce.ac.in

[^0]: Received August 14, 2023. Revised November 22, 2023. Accepted November 28, 2023. * Corresponding author.
 (C) 2024 KSCAM

