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Abstract. This article explains how solitons propagate when there is a

detuning factor involved. The explanation is based on the nonlinear com-

plex Ginzburg-Landau equation, and we first consider this equation before
systematically deriving its solutions using Jacobian elliptic functions. We

illustrate that one specific ellipticity modulus is on the verge of occurring.

The findings from this study can contribute to the understanding of pre-
vious research on the Ginzburg-Landau equation. Additionally, we utilize

Jacobi’s elliptic functions to define specific solutions, especially when the
ellipticity modulus approaches either unity or zero. These solutions cor-

respond to particular periodic wave solitons, which have been previously

discussed in the literature.
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1. Introduction

In recent decades, the investigation of the traveling wave solutions to linear
and nonlinear equations has played a significant role in mathematics, engineering
science, and other nonlinear sciences. Nonlinear problems are far more difficult
to solve than linear ones, which play a major role in many scientific fields of
physics, such as plasma physics, solid-state physics, quantum mechanics, non-
linear optics, fluid mechanics, etc. Solitons, known as solitary waves, have been
the subject of theoretical and experimental study in numerous domains since
1834 [7, 5]. In 1971, optical solitons were first studied. The nonlinear com-
plex Ginzburg-Landau equation GLE [3], which may be found in many fields

Received September 1, 2023. Revised December 29, 2023. Accepted December 31, 2023.
∗Corresponding author.

© 2024 KSCAM.

391



392 A Boussaha, H Zeghdoudi and R Vinoth

of applied mathematics, theoretical physics, nonlinear optics, and engineering,
describes the optical soliton. When, it is a fundamental model that encompasses
a wide range of phenomena, including wave propagation, pattern formation, and
phase transitions. While the complex GLE has been extensively studied, finding
exact analytical solutions, especially soliton solutions, has proven to be a chal-
lenging task. Solitons are fascinating entities that exhibit remarkable properties,
such as self-sustaining stability, localized energy, and the ability to retain their
shape and speed during propagation. However, despite their ubiquity in nature,
solitons are often elusive and difficult to characterize mathematically.
Obtaining soliton solutions to the complex GLE is a topic of great significance
in scientific research and technological advancement. By unraveling the nature
of solitons, we gain valuable insights into the behavior of complex nonlinear sys-
tems and pave the way for novel applications in diverse fields. While challenges
remain in finding new styles of analytical solutions, the pursuit of soliton solu-
tions is a compelling endeavor that promises to enhance our understanding of
many physical interpretations [3].
Various modified versions of the GLE model have been the subject of several
articles [6, 8, 10]. The improved Kudryashov approach has been used in [2]. The
main advantage of using the current modified Jacobi elliptic functions (JEFs)
method is that it provides an analytical solution more general for GLE, that
can be used to study the behavior of superconductors, superfluids, and solitons
under different conditions. However, this method has some limitations, and the
solution obtained may not be accurate in certain situations. Therefore, it is im-
portant to validate the solution obtained from the modified JEFs approach with
numerical simulations or other analytical methods. The pursuit of an accurate
nonlinear partial differential equation (NLPDE) is one of the most popular study
areas nowadays. As is common knowledge, accurate solutions to NLPDEs are
important in a wide range of applied disciplines and offer useful details about
the physical phenomena that GLE attempts to explain. Also, several systematic
approaches [8] have been put forth to get precise solutions to complex GLE with
the introduction of symbolic computation packages. Numerous of these tech-
niques are founded on the idea that the answer may be thought of as a finite
series when compared to the solutions of well-known ordinary differential equa-
tions ODEs such as the Bernoulli, Riccati, and Jacobi equations. One way to
resolve this equation is by using the Jacobi elliptic function JEFs method. In
this method, GLE is transformed into a nonlinear Schrödinger equation NLSE
using a suitable substitution as an auxiliary equation method. The solution of
nonlinear Schrödinger equation NLSE can then be expressed in terms of JEFs.
The modified JEFs approach [1] has garnered the most interest among these
techniques. These findings prompted the authors of the current research to use
the Jacobi elliptic expansion approach to the following complex GLE [4] in order
to construct complex wave patterns.
In this study, we implement another improved JEFs method [1] to investigate
the optical solitons of the GLE with detuning factor, which is considered as [4].
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The structure of this paper is as follows: The modified JEFs technique is used
as an auxiliary equation method in Section 1. Exact explicit solutions of the
complex GLE are provided in Section 2. Plotting solutions are done in the last
Section; when we conclude to summarize the findings.

2. Mathematical Results

In this work, we use a modified JEFs method to construct exact wave solutions
for the complex GLE. The governing model is read as:

i∂q(x,t)∂t + α1
∂2q(x,t)
∂x2 + α2 |q (x, t)|2 q (x, t)

− α3

|q(x,t)|2q∗

[
2 |q (x, t)|2 ∂

2|q(x,t)|2
∂x2 −

(
∂|q(x,t)|2

∂x

)2
]
−,

−α4q (x, t) = 0,

(1)

where q (x, t) represents the complex wave structures that describe the soliton
propagation, q∗ (x, t) is the conjugate of q (x, t) , x and t are the spatial and
temporal variables, respectively. Furthermore, α1 and α2 are the coefficients of
the group velocity dispersion and the Kerr law non-linearity, while α3 and α4

denote the coefficients of the perturbation effects, especially α4, which comes
from the detuning effect [4]. For extracting optical solutions, the wave profile is
divided into amplitude and phase components, respectively, as follows:

q (x, t) = u (ξ) eiψ(ξ), ξ = x− νt, (2)

where q (x, t) is the amplitude component of the wave profiles and the phase
factor is:

ψ (ξ) = −cx+ ωt+ θ, (3)

when ν is the velocity of the soliton, whereas c, ω and θ represent the wave
number, the frequency, and the phase constant, respectively.
The nonlinear complex GLE (1) is transformed into a one-dimensional nonlinear
ordinary differential equation NLODE by taking the required values of (2) and
(3) for (1). Nonlinear GLE (1) turns into an NLODE; we decompose this last
one into real and imaginary parts, which results in a pair of relations. The
imaginary part results in a constraint relation between the soliton parameters
as follows:

ν = −2α1c, (4)

that is a constraint condition for solutions to exist. The real part of ODE is the
following formula:

(α1 − 4α3)u
′′
−
(
ω + c2α1 + α4

)
u+ α2u

3 = 0. (5)

The balance rule detailed in [9] gives N = 1.
Solitons that emerge from the limiting process are presented in the next section.
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3. Optical Solitons-Solutions

Applying the modified auxiliary equation method to the nonlinear GLE (1)
and using the balance rule of [9] (when N = 1), we get to write the solution of
(5) as follows:

u (ξ) =

N∑
i=0

aiF
i (ξ) = a0 + a1F (ξ) , (6)

where a0, a1 are arbitrary constants such that a1 ̸= 0 and F (ξ) is a Jacobian
elliptic function [1], when that last satisfying the following formula:(

F
′
(ξ)

)2

= A2F
2 (ξ) +A4F

4 (ξ) +A6F
6 (ξ) , (7)

where A2, A4 and A6 are arbitrary constants determined by a modified JEFs
method [1].
Substituting (6) and the derivative of (7) in (5) and collecting all terms with the
same power and setting them to zero, we get the following algebraic system:

3a1A6 (α1 − 4α3) = 0,

2a1A4 (α1 − 4α3) + α2a
3
1 = 0,

3α2a0a
2
1 = 0,

A2 (α1 − 4α3) + 3α2a
2
0 −

(
ω + c2α1 + α4

)
= 0,

α2a
2
0 −

(
ω + c2α1 + α4

)
= 0.

(8)

Solving algebraic system (8) by using any computer software (Matlab, Maple,
Wolfram, Mathematica,...) yields the following values:

a0 = 0, a21 = −2 (α1 + α3)
A4

α2
> 0, ω = A2 (α1 − 4α3)− c2α1 − α4, A6 = 0.

From A6 = 0 and the cases detailed in [1]; we can deduce that all Jacobian
elliptic solutions of nonlinear GLE (1) have only one modulus k with 0 ≤ k ≤ 1.
To the best of our current state of knowledge, we think that result may have
been obtained here for the first time in the literature.
According to the work [1]; we can find three cases of solutions as follows:
Case 1: For A2 = −

(
1 + k2

)
, A4 = k2 and A6 = 0, we can obtain the following

new complex Jacobi sine function solution for equation (1):

q1 (x, t, k)

=

√
−2 (α1 + α3)

k2

α2
ei[−cx−(1+k

2)(α1−4α3)t−c2α1t−α4t+θ]sn (x+ 2α1ct, k) . (9)

Case 2: For A2 = 2k2 − 1, A4 = −k2 and A6 = 0, we can obtain the following
new complex Jacobi cosine function solution for equation (1):

q2 (x, t, k)
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=

√
−2 (α1 + 4α3)

k2

α2
ei[−cx+(2k

2−1)(α1−4α3)t−c2α1t−α4t+θ]cn (x+ 2α1ct, k) .

(10)

Case 3: For A2 = 2 − k2, A4 = −1, and A6 = 0, we can obtain the following
new complex Jacobi function solution of the third kind for equation (1):

q3 (x, t, k)

=

√
−2 (α1 + 4α3)

k2

α2
ei[−cx+(2−k

2)(α1−4α3)t−c2α1t−α4t+θ]dn (x+ 2α1ct, k) .

(11)

We see that the new optical solitons-solutions (9)–(10)–(11) have generally dif-
ferent analytical solutions compared to optical solitons that have already been
published. However, for k → 0 or k → 1, several of the specific solutions in [2]
and [4] have become special solutions of (9)-(10)-(11).

4. Concluding Results and Perspectives

We used a modified Jacobi elliptic functions (JEFs) method along with the
complex Ginzburg-Landau equation (GLE) and a tuning factor to find optical
solitons in this study. When the unique ellipticity modulus gets close to one
or zero, these solutions become very useful because they show periodic wave
solutions for solitons. To provide a visual representation, we have included wave
profile plots for soliton solutions denoted as q1 (x, t) , q2 (x, t) and q3 (x, t) are
presented; see Figures 1, 2, and 3, respectively. The obtained solitons hold
significant value in enhancing our understanding of various intricate physical
phenomena, given the GLE’s importance in the telecommunications industry,
where it is employed to describe pulse propagation in nonlinear optical media.
There is no prior literature that mentions the solitons presented in this study,
which have a distinctive modulus. We anticipate that these methodologies and
findings will serve as a valuable resource for researchers grappling with various
nonlinear problems, contributing to a better comprehension of the dynamics
underlying physical phenomena. Perspectives For future study, we can find
new solitons solutions to the complex Ginzburg-Landau equation with Kerr law
nonlinearity according to the new extended direct algebraic method and for
particular solutions.
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Figure 1. Represents q1 soliton solution (9) with appropriate
values of parameters

α1 = 1, α2 = 1, α3 = 1, α4 = 1, c = −0.1, θ = 0 with 0 ≤ k ≤ 1.
(a) is a 3D graph describing the structure of the soliton, and
(b) is the contour that can describe the soliton’s propagation,

while (c) is a 2D graph depicting the propagation of the
soliton waves along x-direction for different times.

Figure 2. Represents q2 soliton solution (10) with
appropriate values of parameters

α1 = 1, α2 = 1, α3 = 1, α4 = 1, c = −0.1, θ = 0 with 0 ≤ k ≤ 1.
(a) is a 3D graph describing the structure of the soliton, and
(b) is the contour that can describe the soliton’s propagation,

while (c) is a 2D graph depicting the propagation of the
soliton waves along x-direction for different times.
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Figure 3. Represents q3 soliton solution (11) with
appropriate values of parameters

α1 = 1, α2 = 1, α3 = 1, α4 = 1, c = −0.1, θ = 0 with 0 ≤ k ≤ 1.
(a) is a 3D graph describing the structure of the soliton, and
(b) is the contour that can describe the soliton’s propagation,

while (c) is a 2D graph depicting the propagation of the
soliton waves along x-direction for different times.
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