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A NOTE ON THE NONLOCAL CONTROLLABILITY
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Abstract. We looked at nonlocal controllability for Hilfer fractional dif-
ferential equations with almost sectorial operator in this manuscript. We

show certain necessary criteria for nonlocal controllability using the mea-

sure of noncompactness and the Mönch fixed point theorem. Finally, we
provided theoretical and practical applications are given to demonstrate

how the abstract results might be applied.
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1. Introduction

Nowadays, the principles of fractional calculation and the fractional differen-
tial equation have played the main role in Mathematics. Currently, the concept
of fractional calculation has been powerfully tested in many social, physical,
signal, image processing, biological, control theory, and engineering problems,
etc. On the other hand, it has been proved that fractional differential equations
are a useful tool in modeling several events. Fractional-order models are better
than integer-order models for several sorts of realistic applications. The exten-
sion of differential equations and inequalities known as differential inclusions,
which is sometimes referred to as control theory, has several users and applica-
tions. When one is adept at employing differential inclusions, dynamical systems
with velocities that aren’t solely determined by the system’s state are easier to
analyse. Numerous studies have been undertaken on boundary value problems.
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Numerous investigations have been conducted to ascertain if fractional differen-
tial inclusions and systems have solutions. The following research articles can
be referenced to support the theory and its application discussed in relation to
fractional calculus: [1, 2, 7, 16, 17, 21, 23, 31, 37].

Controllability plays a vital role in both pure and applied mathematics and
is a key concept in mathematical control theory. Today, controllability plays a
significant role in fractional calculus. As a result, scholars are very interested in
this field and working to develop a new idea and concept connected to control
theory, specifically how to apply control theory to fractional differential systems.
Researchers have made great strides in recent years in understanding the precise
and approximate controllability of many types of dynamical systems, including
delay or not. Discussions of theory and practice related to controllability can
be supported by the research publications [3, 9, 13, 18, 19, 24, 25, 26, 33]. For
further details, see [22, 28, 34, 27].

Another sort of fractional derivative was introduced by Hilfer [11], which in-
cluded both the R-L derivative and the Caputo fractional derivative. Hilfer
fractional calculus is now widely used by scholars. Recently, a lot of academics
have shown a considerable interest in this area, which has led to the work in
[8, 10, 14, 35]. Researchers at [12, 4]came to their results using virtually sec-
torial operators using Schauder’s fixed point theorem. The author of [13, 32]
established their findings using the Mönch fixed point theory and a noncom-
pactness metric. Recently, [29] studied the exact controllability of the Hilfer
fractional system with almost sectorial operator, by using Mönch’s fixed point
theorem. In [30] established the sufficient condition of the existence of mild
solution of Hilfer fractional differential equation on an infinite interval via gen-
eralized Arzela-Ascoli’s theorem.

Following are our article’s significant contributions:

(i) For the Hilfer fractional differential system, we show the necessary and
sufficient conditions for the nonlocal controllability of the Cauchy prob-
lem 1.

(ii) In this work, we study how a fractional differential System 1 has a mild
solution existence and controllable.

(iii) Our System 1 is defined with a nonlocal condition.
(iv) We show that our result is consistent with the concept of measure of

noncompactness.
(v) Firstly, we proved the nonlocal controllability of the system via the mea-

sure of noncompactness by Mönch′s 2.11 fixed point theorem.
(vii) In Example part, first we give a theoretical problem to illustrate our

result.
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(viii) Finally, we study a digital filter system related to our System 1 and the
output given.

In this article, we will look at the following subject: Hilfer fractional differ-
ential equations have almost sectorial operators.{

Dη,ζ
0+ z(s) = Az(s) + F

(
s, z(s)

)
+ Bv(s), s ∈ J ′ = (0, b],

I
(1−η)(1−ζ)
0+

[
z(0) +N(z)

]
= z0,

(1)

where A denote the almost sectorial operator, which generate an analytic semi-

group {T(s), s ≥ 0} on Y. Dη,ζ
0+ denotes the Hilfer fractional derivative of order

η, 0 < η < 1 and type ζ, 0 ≤ ζ ≤ 1. Let z(·) be the state in a Banach space
Y with norm ∥ · ∥ and v(·) be the control function in L2(I, U), where U be
the Banach space. Here B is the bounded linear operator from U into Y. Set
J = [0, b], and let F : I × Y → Y be the Y -valued function and nonlocal term
N : C(I, Y ) → Y .

The following is an outline of the article’s structure. Section 2, discusses
the fundamentals of fractional system, semigroups, sectorial operators, and the
measure of noncompactness (MNC). We discussed the system’s nonlocal con-
trollability in Section 3. In Section 4, we presented theoretical and practical
applications. Finally, conclusions are provided.

2. Main results

In this section, some definitions, theorems and lemma that are used every
part of the article.

Consider F is function defined by F : [b,∞) → R:

Definition 2.1. [37] Let F be a function, then the R − L fractional derivative
has order η > 0 , k − 1 ≤ η < k, k ∈ N, presented by

LDη
b+F(s) =

1

Γ(k − η)

dk

dsk

∫ s

b

F(ρ)

(s− ρ)η+1−k
dρ, s > b, ρ ∈ R+.

Definition 2.2. [37] The Caputo fractional derivative has order η > 0, k− 1 ≤
η < k, k ∈ N for a function F, is defined as

CDη
b+F(s) =

1

Γ(k − η)

∫ s

b

Fk(ρ)

(s− ρ)η+1−k
dρ = Ik−η

b+ Fk(s), s > b, ρ ∈ R+.

Definition 2.3. [11] The Hilfer fractional derivative of order 0 < η < 1 and
type ζ ∈ [0, 1] for the function F : [b,+∞) → R, presented by

Dη,ζ
b+ F(s) = [I

(1−η)ζ
b+ D(I

(1−η)(1−ζ)
b+ F)](s).

Definition 2.4. [22] Let 0 < ϑ < 1, 0 < φ < π
2 , we define the family of

closed linear operators Θ−ϑ
φ , the sector Sφ = {θ ∈ C\{0} with |arg θ| ≤ φ} and

A : D(A) ⊂ Y → Y that satisfy

(a) σ(A) ⊆ Sφ ;
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(b)
∥∥(θI − A)−1

∥∥ ≤ Kδ|ν|−ϑ, for every φ < δ < π and there exists Kδ

be a constant,

then A ∈ Θ−ϑ
φ is known as almost sectorial operator on Y .

Let {Sη(s)}s∈Sπ
2

−φ
, {Qη(s)}s∈Sπ

2
−φ

be the operator families defined as fol-

lows:

Sη(s) =

∫ ∞

0

Wη(ξ)T(s
ηξ)dξ,

Qη(s) =

∫ ∞

0

ηξWη(ξ)T(s
ηξ)dξ,

where Wη(β) be the Wright-type function:

Wη(β) =
∑
k∈N

(−β)k−1

Γ(1− ηk)(k − 1)!
, β ∈ C. (2)

Let −1 < ι < ∞, p > 0, the given properties are hold.

(a) Wη(θ) ≥ 0, s > 0;

(b)
∫∞
0

θιWη(θ)dθ = Γ(1+ι)
Γ(1+ηι) ;

(c)
∫∞
0

η
θ(η+1) e

−pθWη(
1
θη )dθ = e−pη

.

Lemma 2.5. [10] Equation (1) is equivalent to an integral equation given by

z(s) =
z(0)−N(z))

Γ(ζ(1− η) + η)
s(1−η)(ζ−1)

+
1

Γ(η)

∫ s

0

(s− ρ)η−1
[
Az(ρ) + Bv(ρ) + F

(
ρ, z(ρ)

)]
dρ.

Proof. The proof of the Lemma is similar to Lemma 2.12 in [10], so we omit
it. □

From the above Lemma, we get the mild solution of the Cauchy problem 1:

Definition 2.6. The mild solution of the Cauchy problem (1), is a function
z(s) ∈ C(I ′, Y ), that satisfies

z(s) = Sη,ζ(s)
[
z(0)−N(z)

]
+

∫ s

0

Kη(s− ρ)F
(
ρ, z(ρ)

)
dρ

+

∫ s

0

Kη(s− ρ)Bv(ρ)dρ, s ∈ I,

where Sη,ζ(s) = I
ζ(1−η)
0 Kη(s), Kη(s) = sη−1Qη(s).

i.e.,

z(s) = Sη,ζ(s)
[
z(0)−N(z)

]
+

∫ s

0

(s− ρ)η−1Qη(s− ρ)F
(
ρ, z(ρ)

)
dρ

+

∫ s

0

(s− ρ)η−1Qη(s− ρ)Bv(ρ)dρ, s ∈ I. (3)
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Lemma 2.7. [38] Assume T(s) be an equicontinuous, then Qη(s), Kη(s), and
Sη,σ(s) are the strongly continuous, z ∈ Y and e2 > e1 > 0,∥∥Qη(e2)z−Qη(e1)z

∥∥ → 0,
∥∥Kη(e2)z−Kp(e1)z

∥∥ → 0∥∥Sη,ζ(e2)z− Sη,ζ(e1)z
∥∥ → 0, as e2 → e1.

Lemma 2.8. [38] For every s > 0, the linear operators Qη(s), Kη(s) and Sη,ζ(s)
are satisfied following,∥∥Qη(s)z

∥∥ ≤ L′s−η+ηϑ,
∥∥Kη(s)z

∥∥ ≤ L′s−1+ηϑ∥z∥,
∥∥Sη,σ(s)z

∥∥ ≤ L′′s−1+ζ−ηζ+ηϑ∥z∥,
where

L′ = κ0
Γ(ϑ)

Γ(ηϑ)
, L′′ = κ0

Γ(ϑ)

Γ(σ(1− η) + ηϑ)
, for every z ∈ Y.

Definition 2.9. The system (1) is called nonlocally controllable on the interval
I if and only if, for every z0, z1 ∈ Y , there exists a control v ∈ L(J , U) such
that the mild solution z(·) of the System (1) satisfies z(b) +N(z) = z1.

Theorem 2.10. [32] if {zk}∞k=1 is a sequence of Bochner integrable functions
from I into Y with the estimation ∥zk(s)∥ ≤ µ(s) for almost all s ∈ I and every
k ≥ 1, where µ ∈ L1(I,R), then the function φ(s) = β

({
zk(s) : k ≥ 1

})
be in

L1(I,R) and satisfies

β

({∫ s

0

zk(ρ
)
dρ : k ≥ 1

})
≤ 2

∫ s

0

φ(ρ)dρ.

Lemma 2.11. [20] Let D be a closed convex subset of a Banach space Y and 0 ∈
D. Assume that F : D → Y continuous map which satisfies Mönch′s condition,
i.e., if G1 ⊂ D is countable and, D1 ⊂ conv({0} ∪ F(D1)) implies D1 is compact.
Then F has a fixed point in G.

For our convenience, we introduce

Kηn =

[(
1−ηn

−ηϑ−1

)
b

(
−ηϑ−1
1−ηn

)]
, n = 1, 2, K4 = Kη1

∥∥KW

∥∥
L

1
η1 (I,R+)

and K5 =

Kη2

∥∥h∥∥
L

1
η2 (I,R+)

.

3. Controllability

Consider the succeeding hypotheses:

(H1) Let T(s) be the analytical semigroup with ∥T(s)∥ ≤ K1 where the con-
stant K1 ≥ 0.

(H2) The function F : I × Y → Y such that:
(a) F(·, z) is strongly measurable for every z ∈ Y and F(s, ·) is contin-

uous for a.e. s ∈ I;
(b) there exists a constant 0 < η1 < η and m ∈ L

1
η1 (I, [0,∞)) and con-

tinuous increasing function f : [0,∞) → [0,∞) such that
∥∥F(s, z)∥∥ ≤

m(s)f(∥z∥), z ∈ Y, s ∈ I where f satisfies lim inf
k→∞

f(k)
k = 0;
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(c) there exists a constant 0 < η2 < η and h ∈ L
1
η2 (I,R+) such that,

for every bounded subset M ⊂ Y, β(F(s,M)) ≤ h(s)β(M) for a.e.
s ∈ I.

(H3) (a) The linear operator B : L2(I, U) → L1(I, Y ) is bounded, W :

L2(I, U) → Y defined by Wv =
∫ b

0
(b−w)η−1Qη(b− ρ)Bv(ρ)dρ has

an inverse operator W−1 which take the values in L2(I, U)/ kerW
and there exists two positive valuesK2 andK3 such that ∥B∥Lb(U,Y ) ≤
K2,

∥∥W−1
∥∥
Lb(Y,U/ kerW)

≤ K3;

(b) there exists a constant η0 ∈ (0, η) and KW ∈ L
1
η0 (I,R+) such that,

for every bounded set Q ⊂ Y, β((W−1Q)(s)) ≤ KW(s)β(Q).
(H4) The function N : C(I, Y ) → Y is continuous, compact operator and

there exists L1 > 0 be the value such that ∥N(z1)−N(z2)∥ ≤ L1∥z1−z2∥.

Theorem 3.1. Assume (H1)− (H4) holds, then the Hilfer fractional system (1)

has a solution on J provided, K̂ =
[
1+κqK2K4

]
2κqK5b

1−ζ+ηζ−ηϑ < 1, and z(0) ∈
D(Aθ) with θ > 1− ϑ.

Proof. Consider the operator Ψ : X → X , defined

Ψ(z(s))

=

{
z ∈ X : z(s) = s1−ζ+ηζ−ηϑ

[
Sη,ζ(s)

[
z0 −N(z)

]
+

∫ s

0

(s− ρ)η−1Qη(s− ρ)

× F
(
ρ, z(ρ)

)
dρ+

∫ s

0

(s− ρ)η−1Qη(s− ρ)Bv(ρ)dρ

]
, s ∈ (0, d]

}
.

Show that Ψ has a fixed point.
Using (H3), for an arbitrary function z ∈ X , we define the control vz(s) by

vz(s)

= W−1

(
z1 −N(z)− Sη,ζ(b)(z0 −N(z))−

∫ b

0

(b− r)η−1Qη(b− r)F(r, z(r))dr

)
(s).

As we can see Ψ
(
z(b)

)
= z1−N(z) which means that vz steer the Hilfer fractional

system (1) z0 to z1 in the finite time b. This implies that the Equations (1)
become nonlocally controllable on I.

Now, we define Ψ = Ψ1 +Ψ2 where

Ψ1z(s) = s1−ζ+ηζ−ηϑ
(
Sη,ζ(s)(z0 −N(z))

)
,

Ψ2z(s) = s1−ζ+ηζ−ηϑ

(∫ s

0

(s− ρ)η−1Qη(s− ρ)F
(
ρ, z(ρ)

)
dρ

+

∫ s

0

(s− ρ)η−1Qη(s− ρ)Bv(s)dρ

)
.

Step:1 Prove there exists q > 0 such that Ψ(Sq(I)) ⊆ Sq(I). Suppose that
statement is not true i.e., for all q > 0, there exits zq ∈ Sq(I), but Ψ(zq) not in
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Sq(I), that is,∥∥zq∥∥ ≤ q <
∥∥(Ψzq(s)

)∥∥
≤

∥∥∥∥s1−ζ+ηζ−ηϑ

[
Sη,ζ(s)

[
z0 −N(zq)

]
+

∫ s

0

(s− ρ)η−1Qη(s− ρ)F
(
ρ, zq(ρ)

)
dρ

+

∫ s

0

(s− ρ)η−1Qη(s− ρ)BW−1

(
z1 −N(zq)− Sη,ζ(b)(z0 −N(zq))

−
∫ b

0

(b− r)η−1Qη(b− r)F(r, zq(r))dr

)
(s)dρ

∥∥∥∥
≤ b(1−ζ+ηζ−ηϑ

[
sup

∥∥Sη,ζ(s)
[
z0 −N(zq)

]∥∥
+

∫ s

0

(s− ρ)η−1

∥∥∥∥Qη(s− ρ)F
(
ρ, zq(ρ)

)∥∥∥∥dρ
+

∫ s

0

(s− ρ)η−1

∥∥∥∥Qη(s− ρ)BW−1

(
z1 −N(zP )− Sη,ζ(b)(z0 −N(zq))

−
∫ b

0

(b− r)η−1Qη(b− r)F(r, zq(r))dr

)
(ρ)

∥∥∥∥dρ]
≤ b1−ζ+ηζ−ηϑ

[
M∗ +

bηϑ

ηϑ
κpK2K3

[
∥z1∥+ L1∥z∥+ ∥N(0)∥ −M∗]]

where M∗ =

(
Γ(ηζ)

Γ(ζ(1− η)− ηϑ)
κpb

ζ(1−η)−ηϑ−1∥z0∥+ L1∥z∥+ ∥N(0)∥

+
bηϑ

ηϑ
κpm(b)f(∥z∥)

)
.

Dividing both sides by
∥∥zq∥∥ and

∥∥zq∥∥ → ∞, we get 0 ≥ 1, which is the contra-
diction. Thus, Ψ(Sq(I)) ⊂ Sq(I).
Step 2: The operator Ψ is continuous on Sq(I). For that, consider the sequence
zk → z in Sq(I). From hypotheses (H4) and Lemma 2.8, we get

∥Ψ1(zk)−Ψ1(z)∥ ≤ b1−ζ+ηζ−ηϑ∥Sη,ζ(s)∥∥N(zk)−N(z)∥ → 0 as k → ∞. (1)

From (H2) and Lebesgue dominated convergence theorem, we write∫ s

0

(s− ρ)η−1Qη(s− ρ)
∥∥F(ρ, zk(ρ))− F(ρ, z(ρ))

∥∥ → 0 as k → ∞.

Therefore∥∥Ψ2(zk)−Ψ2(z)
∥∥ ≤ bηϑ

ηϑ
κp

∥∥F(ρ, zk(ρ))− F(ρ, z(ρ))
∥∥+

bηϑ

ηϑ
κpK2∥vzk − vz∥ (2)
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where∥∥vzk − vz
∥∥ ≤ K3

(
1− κpb

ζ(1−η)−ηϑ−1 Γ(ηζ)

Γ(ζ(1− η)− ηϑ)

)∥∥N(zk)−N(z)
∥∥

− bηϑ

ηϑ
κp

∥∥F(ρ, zk(ρ))− F(ρ, z(ρ))
∥∥

From the above equations, we get ∥Ψ2(zk) − Ψ2(z)∥ → 0 as k → ∞. So Ψ2 is
continuous on BP (I). Hence∥∥Ψ(zk)−Ψ(z)

∥∥ ≤
∥∥Ψ1(zk)−Ψ1(z)

∥∥+
∥∥Ψ2(zk)−Ψ2(z)

∥∥ → 0 as n → ∞.

Step 3: To show Mönch′s conditions.
Consider M ⊆ Sq(I) is countable and M ⊆ conv({0} ∪ Ψ(M)), we prove that
β(M) = 0, where β is the Hausdorff MNC. We can assume, without losing
generality, M = {zk}∞k=1. If we can show that {Ψzk} is equicontinuous on I,
thenM ⊆ conv({0}∪Ψ(M)) is also equicontinuous on I. Consider z(s) ∈ Ψ(M),
and 0 ≤ s1 < s2 ≤ b, there is z ∈ M such that

∥z(s2)− z(s1)∥ ≤
∥∥∥∥s1−ζ+ηζ−ηϑ

2 Sη,ζ(s2)− s1−ζ+ηζ−ηϑ
1 Sη,ζ(s1)

∥∥∥∥∥∥z0 −N(z)
∥∥

+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

+ s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

+ s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)Bv(ρ)dρ

∥∥∥∥
≤

∥∥s1−ζ+ηζ−ηϑ
2 Sη,ζ(s2)− s1−ζ+ηζ−ηϑ

1 Sη,ζ(s1)
∥∥∥∥z0 −N(z)

∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
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+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

∥∥∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)Bv(ρ)dρ

∥∥∥∥
+

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

∥∥∥∥
=

7∑
i=1

Ii

By the strong continuity of Sη,ζ(s), we get
I1 tends to zero as s2 → s1.

I2 =

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
≤ κp

∫ s1

0

(s2 − ρ)−η−ηϑ

∣∣∣∣s1−ζ+ηζ−ηϑ
2 (s2 − ρ)η−1 − s1−ζ+ηζ−ηϑ

1 (s1 − ρ)η−1

∣∣∣∣
×m(ρ)f(∥z∥)dρ.

From Lebesgue’s dominated convergence theorem, we get lim
s2→s1

I2 = 0.

I3 =

∥∥∥∥s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
≤ s1−ζ+ηζ−ηϑ

1

∫ s1

0

(s1 − ρ)η−1
∥∥Qη(s2 − ρ)−Qη(s1 − ρ)

∥∥m(ρ)f(∥u∥)dρ

By Theorem 2.7, Qη(s) is uniformly continuous in operator norm topology, we
get I3 → 0 as s2 → s1.

I4 =

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)F(ρ, z(ρ))dρ

∥∥∥∥
≤ κp

∣∣∣∣s1−ζ+ηζ−ηϑ
2

∫ s2

0

(s2 − ρ)−ηϑ−1 − s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)−ηϑ−1

∣∣∣∣
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×m(ρ)f(∥u∥)dρ.

Then I4 → 0 as s2 → s1, by using dominated convergence theorem.

I5 =

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s1

0

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

∥∥∥∥
≤ κpK2

∫ s1

0

(
s1−ζ+ηζ−ηϑ
2 (s2 − ρ)η−1 − s1−ζ+ηζ−ηϑ

1 (s1 − ρ)η−1

)
× (s2 − η)−η−ηϑv(ρ)dρ.

I6 =

∥∥∥∥s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

− s1−ζ+ηζ−ηϑ
1

∫ s1

0

(s1 − ρ)η−1Qη(s1 − ρ)Bv(ρ)dρ

∥∥∥∥
≤ K2 s1−ζ+ηζ−ηϑ

1

∫ s1

0

(s1 − ρ)η−1
∥∥Qη(s2 − ρ)−Qη(s1 − ρ)

∥∥v(ρ)dρ
I7 =

∥∥∥∥s1−ζ+ηζ−ηϑ
2

∫ s2

s1

(s2 − ρ)η−1Qη(s2 − ρ)Bv(ρ)dρ

∥∥∥∥
≤ κpK2 s1−ζ+ηζ−ηϑ

2

∥∥∥∥ ∫ s2

s1

(s2 − ρ)−ηϑ−1v(ρ)dρ

∥∥∥∥.
Similar proof of I2 and I3, we get I5 and I6 are tend to zero, also I7 tends to
zero as s2 → s1. Therefore, Ψ(M) is equicontinuous on I.

Now, we need to prove the relatively compactness of Ψ(M) in Y for every
s ∈ I. Using the compactness of the function N , we get

β
(
{(Ψ1zk)(s)}∞k=1

)
≤ β

(
{s1−ζ+ηζ−ηϑSη,ζ(s)

[
z0 −N(zk)

]
}∞k=0

)
= 0.

By Lemma 2.7 and Theorem 2.10, we have

β
(
{Ψ2zk}∞k=0

)
≤ β

(
{s1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)η−1Qη(s− ρ)F(ρ, zk(ρ))}∞k=1

)
+ β

(
{s1−ζ+ηζ−ηϑ

∫ s

0

Qη(s− ρ)Bvzk(ρ)}∞k=1

)
≤ 2κpb

1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1h(ρ)dρβ
(
M(s)

)
+ 2κpK2b

1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1dρβ
(
vzk

)
= J1 + J2.

where

J1 = 2κpb
1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1h(ρ)dρβ
(
M(s)

)
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≤ 2κpb
1−ζ+ηζ−ηϑKη2

∥∥h∥∥
L

1
η2 (I,R+)

β(M)

≤ 2κpK5b
1−ζ+ηζ−ηϑβ(M).

and

J2 = 2κpK2b
1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1dρβ
(
vzk

)
≤ 2κpK2b

1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1dρ

× β

(
W−1

({
z1 −N(zk)− Sη,ζ(b)(z0 −N(z))

−
∫ b

0

(b− r)η−1Qη(b− r)F(r, zk(r))dr
}∞
k=1

)
(ρ)

)
≤ 2κpK2b

1−ζ+ηζ−ηϑ

∫ s

0

(s− ρ)−ηϑ−1KW(ρ)dρκp

∫ b

0

(b− r)−ηϑ−1h(r)drβ(D(s))

≤ 2(κp)
2K2b

1−ζ+ηζ−ηϑKη1

∥∥KW

∥∥
L

1
η1 (I,R+)

Kη2

∥∥h∥∥
L

1
η2 (I,R+)

β(M)

≤ 2(κp)
2K2K4K5b

1−ζ+ηζ−ηϑβ(M).

Then,

β
(
Ψ(M)(s)

)
≤ β

(
Ψ1(M)(s)

)
+ β

(
Ψ2(M)(s)

)
≤

[
1 + κpK2K4

]
2κpK5b

1−ζ+ηζ−ηϑβ(M),

β
(
Ψ(M)

)
≤ K̂β(M)

where K̂ =
[
1 + κpK2K4

]
2κpK5b

1−ζ+ηζ−ηϑ < 1. Therefore, by Mönch′s condi-
tion, we obtain

β(M) ≤ β
(
conv

(
{0} ∪Ψ(M)

)
= β

(
Ψ(M)

)
≤ K̂β(M),

β(M) = 0.

Therefore, M is relatively compactness.
Hence, from Lemma 2.11, Ψ has a fixed point z on Sq(I), which is the mild

solution of the System (1) satisfying z(b) − N(z) = z1. Hence completed the
proof. □

4. Applications

4.1. Application 1. Consider the Hilfer fractional differential systems given
below:

D
2
3 ,ζ

0+ z(s, y) = zy(s, y) + χφ(s, y) + e−s

λ+es sin
(
z(s, y)

)
, s ∈ I = [0, 1],

z(s, 0) = z(s, 1) = 0,

I
(1− 2

3 )(1−ζ)

0+ [z(0, y)] +
∫ b

0
h(ρ) ln

(
1 + |z(ρ, y)| 12

)
dρ = z0, 0 < y < 1,

(1)
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where χ > 0, λ ≥ 1 and D
2
3 ,ζ

0+ is the Hilfer fractional derivative of order 2
3 and

type ζ, I
(1− 2

3 )(1−ζ)

0+ is the R-L integral and the function φ : I × (0, 1) → (0, 1) is

continuous in s and h ∈ L1(I,R).
Consider Y = C([0, 1]), U = C([0, 1]), the operator A : D(A) ⊂ Y → Y is

defined as

Ax = x′, x ∈ D(A) = {x ∈ Y : x′ ∈ Y, x(0) = x(1) = 0}.
Here A is the almost sectorial operator of the semigroup {T (s), s ≥ 0} in Y,

such that sup
s∈I

∥T (s)∥ ≤ K1. Furthermore, s → x(s
2
3 θ+ ρ)z is equicontinuous for

s > 0 and θ ∈ (0,∞).
Set z(x)(y) = z(s, y),

F(s, z(s))(y) =
e−s

λ+ es
sin

(
z(s, y)

)
.

We have F is Lipschitz continuous and satisfies (H2). Let B : U → Y be defined
by (Bv)(s)(y) = χφ(s, y), 0 < y < 1 and N : C(I, Y ) → Y given by:

N(z)(y) =

∫ b

0

h(ρ) ln
(
1 + |z(ρ)(y)| 12

)
dρ,

which satisfy the hypotheses (H4). For y ∈ (0, 1), the operator W is defined as

(Wv)(y) =

∫ 1

0

(1− ρ)
−1
3 Q 2

3
(1− ρ)χφ(ρ, y)dρ.

For s ∈ [0, 1],

Q 2
3
(z(ρ)) =

2

3

∫ ∞

0

θW 2
3
(θ)x(s

2
3 + ρ)dθ,

with the Wright type function.
Assume that W satisfies (H3), then Theorem 3.1 are satisfied. Hence, the

System (1) is nonlocal controllable on I.

4.2. Application 2. Suppose the mild solution of the system 1,

z(s) = §η,ζ(s)
[
z(0)−N(z)

]
+

∫ s

0

(s− ρ)η−1Qη(s− ρ)F
(
ρ, z(ρ)

)
dρ

+

∫ s

0

(s− ρ)η−1Qη(s− ρ)Bv(ρ)dρ, s ∈ I. (2)

We offer the digital filter system matching to the mild solution in 1 which was in-
spired by the filter system described in [5, 36]. Any signal processing application
relies on digital filters as its foundation. Nowadays, a lot of bio-medical signals
relating to the human body are collected for a variety of useful feature extrac-
tions. The majority of the aforementioned signals are typically low frequency in
nature. These signals describe data relating to various illnesses and conditions
for which accuracy is of major relevance. Any digital signal processing filtering
system’s effectiveness depends on its capacity to reject noise.
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Figure 1 

 

 

 

Figure 2 

 

Figure 1. Digital filter system model

The Figure 1 describes the input of the filter system, we defined theoretically
given by:

(1) Product modulator (PM) 1 receive the input z(s) and F give the output
as F

(
ρ, z(ρ)

)
.

(2) PM 2 receives the input Qη(s− ρ) and F
(
ρ, z(ρ)

)
produces the output

as Qη(s− ρ)F
(
ρ, z(ρ)

)
.

(3) PM 3 receives the input v(ρ) and B produces Bv(ρ).
(4) PM 4 receives the input Qη(s − ρ) and Bv(ρ) produces the output as

Qη(s− ρ)Bv(ρ).
(5) PM 5 receives

[
z(0) +N(z)

]
and §η,ζ(s) give the output §η,ζ(s)

[
z(0) +

N(z)
]
.

(6) Then the integrator execute each value Qη(s− ρ)F
(
ρ, z(ρ)

)
and Qη(s−

ρ)Bv(ρ) get its integrals.

Finally, we get the output from the integrator to summer network, i.e., the
output become the mild solution 2.
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The resonant band-pass digital filter implemented as shown in the Figure
1 using Mat lab-simulink through the proposed Equation 2. For the single fre-
quency signal processing application where the selection with accuracy is if great
concern this model would shows the better noise rejection ability. Further the
above shall also be evident through the frequency response obtained through
the simulation as depicted in the Figure 1. The fractional differentiation model
based designed resonant band-pass digital filter system exhibits better tenability
to single frequency along with significant noise rejection ability.

5. Conclusion

In this paper, we primarily focused on the nonlocal controllability of the Hil-
fer fractional differential equation via Mönch’s fixed point theorem. Application
of the findings and concepts from almost sectorial operators, fractional calculus,
measure of noncompactness, and the fixed point technique leads to the main
conclusions. For nonlocal controllability, we developed the necessary require-
ments. After that, we provided a theoretical example to illustrate the result,
and another example explained a digital filter system for corresponding system.
In the future, we will investigate the exact controllability of the Hilfer fractional
systems on an infinite interval and also study the existence and controllability
of the Hilfer fractional differential system with higher-order derivatives.
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