J八MI
 J. Appl. Math. \& Informatics Vol. 42 (2024), No. 2, pp. 417-432 https://doi.org/10.14317/jami.2024.417

ON COMMUTING CONDITIONS OF SEMIRINGS WITH INVOLUTION

LIAQAT ALI, MUHAMMAD ASLAM, MAWAHIB ELAMIN, HUDA UONES MOHAMED AHAMD, NEWMA YAHIA, LAXMI RATHOUR*

Abstract

In this research article, we study a class of semirings with involution. Differential identities involving two or three derivations of a semiring with second kind involution are investigated. It is analyzed that how these identities, with a special role for second kind involution, bring commutativity to semirings.

AMS Mathematics Subject Classification : 16Y60, 16W25, 16W10.
Key words and phrases : MA-semirings, derivations, involution.

1. Introduction

The theory of semirings has tremendous and direct applications in the sciences. For instance, idempotent analysis based on additive inverse semirings has interesting applications in quantum physics (see[22, 25]) and the same algebraic structure is used to develop the formal languages and automata theory $[11,17,12,7,10]$. One can find the applications of semirings in other fields of science and mathematics such as theoretical computer sciences and engineering, parallel computational systems, optimization theory, combinatorics, functional analysis, topology, graph theory, Euclidean geometry, mathematical modeling of quantum physics (see $[13,6,14,15]$). Javed et al. [18] defined MA-semiring as an additive inverse semirings S with absorbing zero ' 0 ' satisfying $w+w^{\prime} \in Z(S)$ for all $w \in S$, where $Z(S)$ is the center of S and w^{\prime} is the pseudo inverse of w. In general, the notion of commutators satisfying Jacobian identities that is not sustainable in semirings, is a peculiarity of MA-semirings. The class of MA-semirings has a significant potential to accommodate the study of derivations satisfying different identities on semirings with involution [2, 4, 3] and without involution [1, 21, 29] for probing commuting conditions. The class of

[^0]MA-semirings properly contains the class of rings. In fact, every ring is an MAsemiring but converse may not be true in general. In the following we present some examples of MA-semirings which are not rings.

Example 1.1. Let $(\mathbb{Z},+,$.$) be the ring of integers and I(\mathbb{Z})$ be the collection of all ideals of \mathbb{Z}. Consider the set $S=M_{2}(\mathbb{Z}) \times I(\mathbb{Z})$ and let $u=\left(A_{1}, I\right), v=$ $\left(A_{2}, J\right) \in S$. Define addition \oplus and multiplication \odot by $u \oplus v=\left(A_{1}+A_{2}, I+J\right)$ and $u \odot v=\left(A_{1} A_{2}, I J\right)$. Then (S, \oplus, \odot) is an example of a proper MA-semiring.

Example 1.2. Let \mathbb{Z} be the set of integers, \mathbb{Z}_{0}^{+}be the set of all non-negative integers and $R=\mathbb{Z} \times \mathbb{Z}_{0}^{+}$. Define addition \oplus and multiplication \odot by $\left(u_{1}, v_{1}\right) \oplus$ $\left(u_{2}, v_{2}\right)=\left(u_{1}+u_{2}, v_{1} \vee v_{2}\right)$ and $\left(u_{1}, v_{1}\right) \odot\left(u_{2}, v_{2}\right)=\left(u_{1} \cdot u_{2}, v_{1} \cdot v_{2}\right)$, where $v_{1} \vee v_{2}=$ $\max \left\{v_{1}, v_{2}\right\}$. Then the triplet (R, \oplus, \odot) forms an MA-semiring which is not a ring.
Example 1.3. [30] Let $(R,+,$.$) be a ring and \mathfrak{L}$ be a distributive lattice. Consider the set $S=R \times \mathfrak{L}$ and let $u=\left(r_{1}, d_{1}\right), v=\left(r_{2}, d_{2}\right) \in S$. Define addition \oplus and multiplication \odot respectively as $u \oplus v=\left(r_{1}+r_{2}, d_{1} \vee d_{2}\right)$ and $u \odot v=\left(r_{1} r_{2}, d_{1} \wedge d_{2}\right)$, where \vee and \wedge indicate join and meet respectively. Then (S, \oplus, \odot) forms an MAsemiring which is not a ring.
For the ring theoretical background and motivated sources, we would like to refer [$8,23,24,26]$). Banach $*$-algebra is a special example of ring with involution in functional analysis (see [19, 20, 27, 28]).
We now state some definitions and basic notions which are pertinent to the main section. Throughout this section S denotes an MA-semiring unless otherwise mentioned. Involution is an additive mapping $*: S \longrightarrow S$ that satisfies $\left(a^{*}\right)^{*}=a$ and $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in S$. The sets of Hermitian and skew Hermitian elements are respectively denoted and defined as $\mathbb{H}(S)=\left\{a \in S: a^{*}=a\right\}$ and $\mathbb{K}(S)=\left\{a \in S: a^{*}=a^{\prime}\right\}$. Involution is of first kind if $Z(S) \subseteq \mathbb{H}(S)$ otherwise it is of second kind. The examples of first and second kind involution for MAsemirings are presented in the following.

Example 1.4. Consider the MA-semiring (S, \oplus, \odot) as described in Example 1.1. Define a mapping $*: S \longrightarrow S$ by $(A, I)^{*}=\left(A^{T}, I\right)$, where A^{T} is the transpose of A. The mapping * defines an involution on S. We further see that $Z(S) \subseteq \mathbb{H}(S)$, therefore * is an involution of first kind.

Example 1.5. Consider the MA-semiring (R, \oplus, \odot) as described in Example 1.2. Let

$$
M_{R}=\left\{\left[\begin{array}{cccc}
w & v & u & x \\
0 & w & 0 & u \\
0 & 0 & w & v^{\prime} \\
0 & 0 & 0 & w
\end{array}\right]: u, v, w, x \in R\right\},
$$

where v^{\prime} is the pseudo inverse of v. Then M_{R} forms an MA-semiring under matrix addition and multiplication. Next, we define a mapping $*: M_{R} \longrightarrow M_{R}$
by

$$
\left[\begin{array}{cccc}
w & v & u & x \\
0 & w & 0 & u \\
0 & 0 & w & v^{\prime} \\
0 & 0 & 0 & w
\end{array}\right]^{*}=\left[\begin{array}{cccc}
w & v & u & x^{\prime} \\
0 & w & 0 & u \\
0 & 0 & w & v^{\prime} \\
0 & 0 & 0 & w
\end{array}\right]
$$

The mapping * defines an involution on M_{R}. We further see that

$$
\left[\begin{array}{cccc}
w & 0 & 0 & x \\
0 & w & 0 & 0 \\
0 & 0 & w & 0 \\
0 & 0 & 0 & w
\end{array}\right] \in Z\left(M_{R}\right)
$$

for all $w, x \in R$. For $\left[\begin{array}{cccc}w & 0 & 0 & x \\ 0 & w & 0 & 0 \\ 0 & 0 & w & 0 \\ 0 & 0 & 0 & w\end{array}\right]$,
with $x=\left(u_{1}, v_{1}\right)$ and $u_{1} \neq 0$, we can find

$$
\left[\begin{array}{cccc}
w & 0 & 0 & x \\
0 & w & 0 & 0 \\
0 & 0 & w & 0 \\
0 & 0 & 0 & w
\end{array}\right]^{*}=\left[\begin{array}{cccc}
w & 0 & 0 & x^{\prime} \\
0 & w & 0 & 0 \\
0 & 0 & w & 0 \\
0 & 0 & 0 & w
\end{array}\right]
$$

This means $\left[\begin{array}{cccc}w & 0 & 0 & x \\ 0 & w & 0 & 0 \\ 0 & 0 & w & 0 \\ 0 & 0 & 0 & w\end{array}\right] \notin \mathbb{H}\left(M_{R}\right)$.
Thus $Z\left(M_{R}\right) \nsubseteq \mathbb{H}\left(M_{R}\right)$ and hence * is an involution of second kind.
An additive mapping $\varrho: S \longrightarrow S$ is a derivation if $\varrho(a b)=\varrho(a) b+a \varrho(b)$. The Jordan product or anti-commutator of $a, b \in S$ is defined as $a \circ b=a b+b a$. The commutator of $a, b \in S$ is defined as $[a, b]=a b+b^{\prime} a$. A mapping $\varrho: S \longrightarrow S$ is commuting (centralizing) if $[\varrho(v), v]=0([[\varrho(v), v], t]=0)$, for all $v, t \in S$.
One can find MA-semirings, in which well known properties of rings are not valid in general. For example if S is an MA-semiring and $s, t \in S$, then $s t=t s$ does not admit $[s, t]=0 ;[s, s] \neq 0$ if $s \neq 0$; if ϱ is derivation of S and $s \in Z(S)$, then $\varrho(s)$ may not belong to $Z(S)$.
We now compose some lemmas which will be useful for proving the main results.
Lemma 1.6. Let S be an MA-semiring and ϱ be a derivation of S. Then for all $a, b, c \in S, z \in Z(S)$, we have
(1) $[a, a b]=a[a, b]$
(2) $[a, b c]=[a, b] c+b[a, c]$
(3) $[a b, c]=a[b, c]+[a, c] b$
(4) $(a b)^{\prime}=a^{\prime} b=a b^{\prime}$
(5) $[a, b]+[b, a]=b\left(a+a^{\prime}\right)=a\left(b+b^{\prime}\right)$
(6) $[a, b]^{\prime}=\left[a, b^{\prime}\right]=\left[a^{\prime}, b\right]=[b, a]$
(7) $a \circ(b+c)=a \circ b+a \circ c$
(8) $\varrho\left(a^{\prime}\right)=(\varrho(a))^{\prime}$
(9) $[a, b z]=z[a, b]=[a, b] z$
(10) $[a, a]=[a, a]^{\prime}$
(11) $a+b=0 \Rightarrow a=b^{\prime}$, however the converse may not hold in general.

For more one can see [18, 29].
Throughout the sequel $h_{z} \in Z(S) \cap \mathbb{H}(S)$ and $k_{z} \in Z(S) \cap \mathbb{K}(S)$, for the sake of convenience, unless mentioned otherwise.

Lemma 1.7. [3] Let S be a semiprime $M A$-semiring with second kind involution *. Then $Z(S) \cap \mathbb{K}(S) \neq\{0\}$ and therefore $Z(S) \cap \mathbb{H}(S) \neq\{0\}$.

From the definition of Hermitian and the skew Hermitian elements of an MAsemiring with second kind involution, one can observe the following.

Remark 1.8. If S is an MA-semiring with second kind involution *, then
(1) $k^{2} \in \mathbb{H}(S)$.
(2) $h h_{z} \in \mathbb{H}(S)$.
(3) $k k_{z} \in \mathbb{H}(S)$.
(4) $h k_{z} \in \mathbb{K}(S)$.

Lemma 1.9. Let @ be a derivation of a 2-torsion free prime MA-semiring S with second kind involution *. If $\varrho\left(h_{z}\right)=0$ for any $h_{z} \in Z(S) \cap \mathbb{H}(S)$, then $\varrho\left(k_{z}\right)=0$ for any $k_{z} \in Z(S) \cap \mathbb{K}(S)$.
Proof. By the Observation 1.8, for any $k_{z} \in Z(S) \cap \mathbb{K}(S)$, we have $k_{z}^{2} \in Z(S) \cap$ $\mathbb{H}(S)$. Then $\varrho\left(k_{z}^{2}\right)=2 k_{z} \varrho\left(k_{z}\right)=0$. As S is 2-torsion free, we find $k_{z} \varrho\left(k_{z}\right)=0$, which further implies $k_{z} S \varrho\left(k_{z}\right)=\{0\}$. As * is of second kind and S is prime, by Lemma 1.7, we obtain $\varrho\left(k_{z}\right)=0$.

Lemma 1.10. Let S be a prime $M A$-semiring S and ϱ be a nonzero derivation satisfying

$$
\begin{equation*}
[\varrho(w), w]=0 \tag{1}
\end{equation*}
$$

for all $w \in S$. Then S is commutative.
Proof. Linearizing $[\varrho(w), w]=0$ and using it again, we get

$$
\begin{equation*}
[\varrho(w), u]+[\varrho(u), w]=0 \tag{2}
\end{equation*}
$$

for all $w, u \in S$. In (2) substituting $u w$ for u, we get

$$
[\varrho(w), u] w+u[\varrho(w), w]+[\varrho(u), w] w+u[\varrho(w), w]+[u, w] \varrho(w)=0
$$

for all $w, u \in S$ and therefore

$$
([\varrho(w), u]+[\varrho(u), w]) w+u[\varrho(w), w]+u[\varrho(w), w]+[u, w] \varrho(w)=0
$$

for all $w, u \in S$. Using (1) and (2) again, we get

$$
\begin{equation*}
[u, w] \varrho(w)=0 \tag{3}
\end{equation*}
$$

for all $w, u \in S$. In (3), substituting $s v$ for u and using (3) again, we get $[s, w] S \varrho(w)=\{0\}$ for all $s, w \in S$. By the primeness of S, we have $[s, w]=0$ or $\varrho(w)=0$ for all $s, w \in S$. This means $S=S_{1} \cup S_{2}$, where $S_{1}=\{w \in S$: $[s, w]=0$, for all $s \in S\}$ and $S_{2}=\{w \in S: \varrho(w)=0\}$. We claim that either $S_{1}=S$ or $S_{2}=S$. For this we show that either $S_{2} \subseteq S_{1}$ or $S_{1} \subseteq S_{2}$. Assuming on the contrary, let $w_{1} \in S_{1} \backslash S_{2}$ and $w_{2} \in S_{2} \backslash S_{1}$. One can observe that $w_{1}+w_{2} \in S_{1}+S_{2} \subseteq S_{1} \cup S_{2}=S$, therefore we have either $w_{1}+w_{2} \in S_{1}$ or $w_{1}+w_{2} \in S_{2}$. If $w_{1}+w_{2} \in S_{1}$, then $0=\left[w_{1}+w_{2}, s\right]=\left[w_{1}, s\right]+\left[w_{2}, s\right]=\left[w_{2}, s\right]$ for all $s \in S$, which means that $w_{2} \in S_{1}$, a contradiction. Secondly if $w_{1}+w_{2} \in S_{2}$, then $0=\varrho\left(w_{1}+w_{2}\right)=\varrho\left(w_{1}\right)+\varrho\left(w_{2}\right)=\varrho\left(w_{1}\right)$ which implies that $w_{1} \in S_{2}$, a contradiction. Therefore we conclude that either $S_{1}=S$ or $S_{2}=S$. If $S_{2}=S$, then $\varrho=0$, which contradicts the hypothesis. Secondly S is commutative if $S_{1}=S$.

Shakir et al. [5] investigated $*$-differential identities involving pairs of derivations of prime rings with second kind involution $*$. In the main section of this paper, we establish the results of [5] for a certain class of semirings known as MA-semirings with second kind involution. We also present a generalized version of a result of Herstein [16].

2. Main results

An extended version of Theorem 3.1 of [5] is given in the following.
Theorem 2.1. Let ϱ_{1} and ϱ_{2} be two derivations of S such that at least one of ϱ_{1} and ϱ_{2} is non zero. If

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}\left(w^{*}\right)\right]+\varrho_{2}\left(w \circ w^{*}\right)=0 \tag{4}
\end{equation*}
$$

for all $w \in S$, then S is commutative.
Proof. Case 1: If $\varrho_{1} \neq 0$ and $\varrho_{2}=0$, then from (4), we obtain

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}\left(w^{*}\right)\right]=0 \tag{5}
\end{equation*}
$$

for all $w \in S$. Linearizing (5) and using (5) again, we get

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}\left(v^{*}\right)\right]+\left[\varrho_{1}(v), \varrho_{1}\left(w^{*}\right)\right]=0 \tag{6}
\end{equation*}
$$

for all $w, v \in S$. Substituting $v h_{z}$ for v in (6) and employing Lemma 1.6, we get

$$
\begin{aligned}
&\left(\left[\varrho_{1}(w), \varrho_{1}\left(v^{*}\right)\right]+\left[\varrho_{1}(v), \varrho_{1}\left(w^{*}\right)\right]\right) h_{z} \\
&+ {\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]+\left[v \varrho_{1}\left(h_{z}\right), \varrho_{1}\left(w^{*}\right)\right]=0 }
\end{aligned}
$$

for all $w, v \in S$. Using (6) again, we get

$$
\begin{equation*}
\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]+\left[v \varrho_{1}\left(h_{z}\right), \varrho_{1}\left(w^{*}\right)\right]=0 \tag{7}
\end{equation*}
$$

for all $w, v \in S$. Substituting $v k_{z}$ for v in (7) and employing Lemma 1.6, we obtain

$$
\left(\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]^{\prime}+\left[v \varrho_{1}\left(h_{z}\right), \varrho_{1}\left(w^{*}\right)\right]\right) S k_{z}=\{0\}
$$

for all $w, v \in S$. As * is of second kind and S is prime, using Lemma 1.7, we obtain

$$
\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]^{\prime}+\left[v \varrho_{1}\left(h_{z}\right), \varrho_{1}\left(w^{*}\right)\right]=0
$$

for all $w, v \in S$ and hence by the property of pseudo inverse, we have

$$
\begin{equation*}
\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]=\left[v \varrho_{1}\left(h_{z}\right), \varrho_{1}\left(w^{*}\right)\right] \tag{8}
\end{equation*}
$$

for all $w, v \in S$. Using (8) into (7), we obtain $\left[\varrho_{1}(w), v^{*} \varrho_{1}\left(h_{z}\right)\right]=0$ and substituting v^{*} for v, we have

$$
\begin{equation*}
\left[\varrho_{1}(w), v \varrho_{1}\left(h_{z}\right)\right]=0 \tag{9}
\end{equation*}
$$

for all $w, v \in S$. In (9), substituting $r v$ for v and using Lemma 1.6, we obtain

$$
r\left[\varrho_{1}(w), v \varrho_{1}\left(h_{z}\right)\right]+\left[\varrho_{1}(w), r\right] v \varrho_{1}\left(h_{z}\right)=0
$$

for all $r, w, v \in S$. Using (9) in the last relation, we obtain

$$
\left[\varrho_{1}(w), r\right] S \varrho_{1}\left(h_{z}\right)=\{0\}
$$

As S is prime, we obtain either $\left[\varrho_{1}(w), r\right]=0$ or $\varrho_{1}\left(h_{z}\right)=0$. Assume that $\left[\varrho_{1}(w), r\right]=0$, for all $w, r \in S$. Then by Lemma $1.10, S$ is commutative. In view of Lemma 1.9, from the second possibility, we have $\varrho_{1}\left(k_{z}\right)=0$. Substituting $v k_{z}$ for v in (6) and using the fact that $\varrho_{1}\left(k_{z}\right)=0$, we obtain

$$
\left[\varrho_{1}(w), \varrho_{1}\left(v^{*}\right)\right]^{\prime}+\left[\varrho_{1}(v), \varrho_{1}\left(w^{*}\right)\right]=0
$$

for all $w, v \in S$ and therefore

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}\left(v^{*}\right)\right]=\left[\varrho_{1}(v), \varrho_{1}\left(w^{*}\right)\right] \tag{10}
\end{equation*}
$$

for all $w, v \in S$. As S is 2-torsion freeness, using (10) into (9), we obtain

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}(v)\right]=0 \tag{11}
\end{equation*}
$$

for all $w, v \in S$. In (11) substituting $w v$ for v and using Lemma 1.6, we obtain

$$
w\left[\varrho_{1}(w), \varrho_{1}(v)\right]+\left[\varrho_{1}(w), w\right] \varrho_{1}(v)+\varrho_{1}(w)\left[\varrho_{1}(w), v\right]+\left[\varrho_{1}(w), \varrho_{1}(w)\right] v=0
$$

for all $w, v \in S$. Using (11) again, we obtain

$$
\begin{equation*}
\left[\varrho_{1}(w), w\right] \varrho_{1}(v)+\varrho_{1}(w)\left[\varrho_{1}(w), v\right]=0 \tag{12}
\end{equation*}
$$

for all $w, v \in S$. Substituting $r v$ for v in (12), we have

$$
\left[\varrho_{1}(w), w\right] r \varrho_{1}(v)+\left[\varrho_{1}(w), w\right] \varrho_{1}(r) v+\varrho_{1}(w) r\left[\varrho_{1}(w), v\right]+\varrho_{1}(w)\left[\varrho_{1}(w), r\right] v=0
$$

for all $r, w, v \in S$ and using (12) again, we obtain

$$
\begin{equation*}
\left[\varrho_{1}(w), w\right] r \varrho_{1}(v)+\varrho_{1}(w) r\left[\varrho_{1}(w), v\right]=0 \tag{13}
\end{equation*}
$$

for all $r, v, w \in S$. Substituting $\varrho_{1}(v)$ for v in (13), we get

$$
\left[\varrho_{1}(w), w\right] r \varrho_{1}\left(\varrho_{1}(v)\right)+\varrho_{1}(w) r\left[\varrho_{1}(w), \varrho_{1}(v)\right]=0
$$

for all $r, w, v \in S$. Using (11) again, we get

$$
\left[\varrho_{1}(w), w\right] S \varrho_{1}\left(\varrho_{1}(v)\right)=\{0\}
$$

and by the primeness, we have either $\left[\varrho_{1}(w), w\right]=0$ or $\varrho_{1}^{2}(v)=0$ for all $v, w \in S$. For the first possibility, by Lemma 1.10, S is commutative. Secondly if $\varrho_{1}^{2}(v)=0$,
then by Theorem 1 of [1], we get $\varrho_{1}=0$, a contradiction.
Case 2: If $\varrho_{1}=0$ and $\varrho_{2} \neq 0$, then we obtain

$$
\varrho_{2}\left(w \circ w^{*}\right)=0
$$

for all $w \in S$, from (4). Then by Theorem 2.6 of [3], S is commutative.
Case 3:If $\varrho_{1} \neq 0$ and $\varrho_{2} \neq 0$. Substituting w^{*} for w in (4), we get

$$
\left[\varrho_{1}\left(w^{*}\right), \varrho_{1}(w)\right]+\varrho_{2}\left(w^{*} \circ w\right)=0
$$

for all $w \in S$. As $w \circ v=v \circ w$ and since $[w, v]=[v, w]^{\prime}$, for all $v, w \in S$, therefore

$$
\left[\varrho_{1}(w), \varrho_{1}\left(w^{*}\right)\right]^{\prime}+\varrho_{2}\left(w \circ w^{*}\right)=0
$$

for all $v, w \in S$ and by the above mentioned identities, we can further write

$$
\begin{equation*}
\left[\varrho_{1}(w), \varrho_{1}\left(w^{*}\right)\right]=\varrho_{2}\left(w \circ w^{*}\right) \tag{14}
\end{equation*}
$$

for all $w \in S$. Using (14) into (4), we get $2 \varrho_{2}\left(w \circ w^{*}\right)=0$ for all $w \in S$ and because of the 2 -torsion freeness of S, we have $\varrho_{2}\left(w \circ w^{*}\right)=0$ for all $w \in S$. The remaining part follows through same arguments of Case 2.

Theorem 2.2 is an extended form of Theorem 3.2 of [5], which can be established through the similar set of calculations of the proof of Theorem 2.1.

Theorem 2.2. Let ϱ_{1} and ϱ_{2} be derivations of S such that at least one of ϱ_{1} and ϱ_{2} is non zero. If

$$
\left[\varrho_{1}(w), \varrho_{1}\left(w^{*}\right)\right]+\varrho_{2}\left(w^{\prime} \circ w^{*}\right)=0
$$

for all $w \in S$, then S is commutative.
In the following, Theorem 3.3 of [5] is demonstrated for MA-semirings with involution.

Theorem 2.3. Let ϱ_{1} and ϱ_{2} be derivations of S such that at least one of ϱ_{1} and ϱ_{2} is non zero. If

$$
\begin{equation*}
\varrho_{1}(w) \circ \varrho_{1}\left(w^{*}\right)+\varrho_{2}\left[w, w^{*}\right]=0 \tag{15}
\end{equation*}
$$

for all $w \in S$, then S is commutative.
Proof. Case 1: If $\varrho_{1}=0$ and $\varrho_{2} \neq 0$, then from (15), we obtain $\varrho_{2}\left[w, w^{*}\right]=0$ for all $w \in S$ and hence by Lemma 2.5 of [3], S is commutative.
Case 2:If $\varrho_{1} \neq 0$ and $\varrho_{2}=0$, then from (15), we obtain

$$
\begin{equation*}
\varrho_{1}(w) \circ \varrho_{1}\left(w^{*}\right)=0 \tag{16}
\end{equation*}
$$

for all $w \in S$. Linearizing (16) and using (16) again, we get

$$
\begin{equation*}
\varrho_{1}(w) \circ \varrho_{1}\left(v^{*}\right)+\varrho_{1}(v) \circ \varrho_{1}\left(w^{*}\right)=0 \tag{17}
\end{equation*}
$$

for all $w \in S$. In (16) substituting $v h_{z}$ for v, we find
$\left(\varrho_{1}(w) \circ \varrho_{1}\left(v^{*}\right)+\varrho_{1}(v) \circ \varrho_{1}\left(w^{*}\right)\right) h_{z}+\varrho_{1}(w) \circ\left(v^{*} \varrho_{1}\left(h_{z}\right)\right)+\left(v \varrho_{1}\left(h_{z}\right)\right) \circ \varrho_{1}\left(w^{*}\right)=0$
for all $w, v \in S$ and using (17) again, we have

$$
\begin{equation*}
\varrho_{1}(w) \circ\left(v^{*} \varrho_{1}\left(h_{z}\right)\right)+\left(v \varrho_{1}\left(h_{z}\right)\right) \circ \varrho_{1}\left(w^{*}\right)=0 \tag{18}
\end{equation*}
$$

for all $v, w \in S$. Substituting $v k_{z}$ for v in (18), we obtain

$$
\left(\varrho_{1}(w) \circ\left(v^{*} \varrho_{1}\left(h_{z}\right)\right)^{\prime}+\left(v \varrho_{1}\left(h_{z}\right)\right) \circ \varrho_{1}\left(w^{*}\right)\right) S k_{z}=\{0\}
$$

for all $w, v \in S$. As S is prime, employing Lemma 1.7, we have

$$
\varrho_{1}(w) \circ\left(v^{*} \varrho_{1}\left(h_{z}\right)\right)^{\prime}+\left(v \varrho_{1}\left(h_{z}\right)\right) \circ \varrho_{1}\left(w^{*}\right)=0
$$

for all $v, w \in S$, which further implies

$$
\begin{equation*}
\varrho_{1}(w) \circ\left(v^{*} \varrho_{1}\left(h_{z}\right)\right)=\left(v \varrho_{1}\left(h_{z}\right)\right) \circ \varrho_{1}\left(w^{*}\right) \tag{19}
\end{equation*}
$$

for all $v, w \in S$. In view of the 2-torsion freeness of S, using (19) into (18), and then substituting v^{*} for v, we have $\varrho_{1}(w) \circ\left(v \varrho_{1}\left(h_{z}\right)\right)=0$ and therefore

$$
\begin{equation*}
v \varrho_{1}\left(h_{z}\right) \varrho_{1}(w)+\varrho_{1}(w) v \varrho_{1}\left(h_{z}\right)=0 \tag{20}
\end{equation*}
$$

for all $w, v \in S$. In view of Lemma 1.6, from (20), we can write

$$
\begin{equation*}
v \varrho_{1}\left(h_{z}\right) \varrho_{1}(w)=\varrho_{1}(w) v^{\prime} \varrho_{1}\left(h_{z}\right) \tag{21}
\end{equation*}
$$

for all $w, v \in S$. In (20), substituting $r v$ for v, we get

$$
\begin{equation*}
r v \varrho_{1}\left(h_{z}\right) \varrho_{1}(w)+\varrho_{1}(w) r v \varrho_{1}\left(h_{z}\right)=0 \tag{22}
\end{equation*}
$$

for all $r, w, v \in S$. Multiplying (21) by r from the left, we obtain

$$
\begin{equation*}
r v \varrho_{1}\left(h_{z}\right) \varrho_{1}(w)=r \varrho_{1}(w) v^{\prime} \varrho_{1}\left(h_{z}\right) \tag{23}
\end{equation*}
$$

for all $r, w, v \in S$. Using (23) into (22), we get $\left[\varrho_{1}(w), r\right] S \varrho_{1}\left(h_{z}\right)=\{0\}$. In view of the primeness of S, employing Lemma 1.7, we obtain either $\left[\varrho_{1}(w), r\right]=0$ or $\varrho_{1}\left(h_{z}\right)=0$. If $\left[\varrho_{1}(w), r\right]=0$, then commutativity of S follows by Lemma 1.10. On the other hand if $\varrho_{1}\left(h_{z}\right)=0$, then by Lemma 1.9, we find $\varrho_{1}\left(k_{z}\right)=0$. Substituting $v k_{z}$ for v in (17) and hence using the primeness of S, we obtain

$$
\left(\varrho_{1}(w) \circ \varrho_{1}\left(v^{*}\right)\right)^{\prime}+\varrho_{1}(v) \circ \varrho_{1}\left(w^{*}\right)=0
$$

for all $v, w \in S$ and hence

$$
\begin{equation*}
\varrho_{1}(w) \circ \varrho_{1}\left(v^{*}\right)=\varrho_{1}(v) \circ \varrho_{1}\left(w^{*}\right) \tag{24}
\end{equation*}
$$

for all $v, w \in S$. As S is 2-torsion free, using (24) into (17), we obtain $\varrho_{1}(w) \circ$ $\varrho_{1}\left(v^{*}\right)=0$ which further gives

$$
\begin{equation*}
\varrho_{1}(w) \varrho_{1}(v)+\varrho_{1}(v) \varrho_{1}(w)=0 \tag{25}
\end{equation*}
$$

for all $w, v \in S$. From (25), we can write

$$
\begin{equation*}
\varrho_{1}(w) \varrho_{1}(v)=\varrho_{1}\left(v^{\prime}\right) \varrho_{1}(w) \text { for all } w, v \in S \tag{26}
\end{equation*}
$$

for all $w, v \in S$. Substituting $r w$ for w in (25), we obtain

$$
r \varrho_{1}(w) \varrho_{1}(v)+\varrho_{1}(r) u \varrho_{1}(v)+\varrho_{1}(v) r \varrho_{1}(w)+\varrho_{1}(v) \varrho_{1}(r) w=0
$$

for all $r, w, v \in S$ and using (25) again

$$
r^{\prime} \varrho_{1}(v) \varrho_{1}(w)+\varrho_{1}(r) w \varrho_{1}(v)+\varrho_{1}(v) r \varrho_{1}(w)+\varrho_{1}(r) \varrho_{1}(v) w^{\prime}=0
$$

for all $r, w, v \in S$ and after the rearrangement of the terms, we obtain

$$
r^{\prime} \varrho_{1}(v) \varrho_{1}(w)+\varrho_{1}(v) r \varrho_{1}(w)+\varrho_{1}(r) w \varrho_{1}(v)+\varrho_{1}(r) \varrho_{1}(v) w^{\prime}=0
$$

for all $r, w, v \in S$. Therefore

$$
\begin{equation*}
\left[\varrho_{1}(v), r\right] \varrho_{1}(w)+\varrho_{1}(r)\left[w, \varrho_{1}(v)\right]=0 \tag{27}
\end{equation*}
$$

for all $r, w, v \in S$. In (27) replacing w by $\varrho_{1}(v)$, we get

$$
\begin{equation*}
\left[\varrho_{1}(v), r\right] \varrho_{1}\left(\varrho_{1}(v)\right)+\varrho_{1}(r)\left[\varrho_{1}(v), \varrho_{1}(v)\right]=0 \tag{28}
\end{equation*}
$$

for all $r, w, v \in S$. By Lemma 1.6, we can write $[w, w]=[w, w]^{\prime}$ for all $w \in S$, therefore from (28) we have

$$
\left[\varrho_{1}(v), r\right] \varrho_{1}\left(\varrho_{1}(v)\right)+\varrho_{1}(r)\left[\varrho_{1}(v), \varrho_{1}(v)\right]^{\prime}=0
$$

for all $r, v \in S$ which further implies

$$
\begin{equation*}
\left[\varrho_{1}(v), r\right] \varrho_{1}\left(\varrho_{1}(v)\right)=\varrho_{1}(r)\left[\varrho_{1}(v), \varrho_{1}(v)\right] \tag{29}
\end{equation*}
$$

for all $r, v \in S$. Using (29) into (28) and we obtain

$$
\left[\varrho_{1}(v), r\right] \varrho_{1}\left(\varrho_{1}(v)\right)=0
$$

which further implies $\left[\varrho_{1}(v), r\right] S \varrho_{1}\left(\varrho_{1}(v)\right)=\{0\}$. By the primeness, we find $\left[\varrho_{1}(v), r\right]=0$ or $\varrho_{1}^{2}(v)=0$ for all $v \in S$. If $\varrho_{1}^{2}(v)=0$, then by Theorem 1 of [1], we get $\varrho_{1}=0$, which contradicts our assumption. On the other hand, if $\left[\varrho_{1}(v), r\right]=0$, then commutativity of S follows through Lemma 1.10.
Case 3:If $\varrho_{1} \neq 0$ and $\varrho_{2} \neq 0$. In (15) replacing w by w^{*}, we obtain

$$
\varrho_{1}\left(w^{*}\right) \circ \varrho_{1}(w)+\varrho_{2}\left[w^{*}, w\right]=0
$$

As $w \circ v=v \circ w$ and $[w, v]=[v, w]^{\prime}$, for all $w, v \in S$, therefore from the last equation, we have

$$
\varrho_{1}(w) \circ \varrho_{1}\left(w^{*}\right)+\varrho_{2}\left[w, w^{*}\right]^{\prime}=0
$$

which further implies

$$
\begin{equation*}
\varrho_{1}(w) \circ \varrho_{1}\left(w^{*}\right)=\varrho_{2}\left[w, w^{*}\right] \tag{30}
\end{equation*}
$$

for all $w \in S$. As S is 2-torsion free, using (30) into (15), we obtain $\varrho_{2}\left[w, w^{*}\right]=0$ for all $w \in S$. Commutativity of S follows through Lemma 2.5 of [3].

Following result presents the Theorem 3.4 of [5] in an extended form.
Theorem 2.4. Let ϱ_{1} and ϱ_{2} be derivations of S such that at least one of ϱ_{1} and ϱ_{2} is non zero. If

$$
\varrho_{1}(w) \circ \varrho_{1}\left(w^{*}\right)+\varrho_{2}\left[w, w^{*}\right]^{\prime}=0
$$

for all $w \in S$, then S is commutative.
Following result presents an extended form of the Theorem 3.5 of [5].

Theorem 2.5. Let ϱ be a nonzero derivation of S satisfying

$$
\begin{equation*}
\varrho\left(\left[w, w^{*}\right]\right)+\left[\varrho(w), \varrho\left(w^{*}\right)\right]=0 \tag{31}
\end{equation*}
$$

for all $w \in S$. Then S is commutative.
Proof. Linearizing (31) and again using (31), we obtain

$$
\begin{equation*}
\varrho\left(\left[w, v^{*}\right]\right)+\varrho\left(\left[v, w^{*}\right]\right)+\left[\varrho(w), \varrho\left(v^{*}\right)\right]+\left[\varrho(v), \varrho\left(w^{*}\right)\right]=0 \tag{32}
\end{equation*}
$$

for all $w, v \in S$. Substituting $v h_{z}$ for v in (32), and using Lemma 1.6, we obtain

$$
\begin{aligned}
& \left(\varrho\left[w, v^{*}\right]+\varrho\left[v, w^{*}\right]+\left[\varrho(w), \varrho\left(v^{*}\right)\right]+\left[\varrho(v), \varrho\left(w^{*}\right)\right]\right) h_{z} \\
& \quad+\left[w, v^{*}\right] \varrho\left(h_{z}\right)+\left[v, w^{*}\right] \varrho\left(h_{z}\right)+\left[\varrho(w), v^{*} \varrho\left(h_{z}\right)\right]+\left[v \varrho\left(h_{z}\right), \varrho\left(w^{*}\right)\right]=0
\end{aligned}
$$

for all $w, v \in S$. Using (32) in the last identity and then after the replacement of v by v^{*}, we obtain

$$
\begin{equation*}
[w, v] \varrho\left(h_{z}\right)+\left[\varrho(w), v \varrho\left(h_{z}\right)\right]+\left[v^{*}, w^{*}\right] \varrho\left(h_{z}\right)+\left[v^{*} \varrho\left(h_{z}\right), \varrho\left(w^{*}\right)\right]=0 \tag{33}
\end{equation*}
$$

for all $w, v \in S$. In (33) substituting $v k_{z}$ for v, we get

$$
\left([w, v] \varrho\left(h_{z}\right)+\left[\varrho(w), v \varrho\left(h_{z}\right)\right]+\left[v^{*}, w^{*}\right]^{\prime} \varrho\left(h_{z}\right)+\left[v^{*} \varrho\left(h_{z}\right), \varrho\left(w^{*}\right)\right]^{\prime}\right) S k_{z}=\{0\}
$$

for all $w, v \in S$. In view of Lemma 1.7, using the primeness of S, we have

$$
\left([w, v] \varrho\left(h_{z}\right)+\left[\varrho(w), v \varrho\left(h_{z}\right)\right]+\left[v^{*}, w^{*}\right]^{\prime} \varrho\left(h_{z}\right)+\left[v^{*} \varrho\left(h_{z}\right), \varrho\left(w^{*}\right)\right]^{\prime}\right)=0
$$

for all $w, v \in S$ and therefore

$$
\begin{equation*}
[w, v] \varrho\left(h_{z}\right)+\left[\varrho(w), v \varrho\left(h_{z}\right)\right]=\left[v^{*}, w^{*}\right] \varrho\left(h_{z}\right)+\left[v^{*} \varrho\left(h_{z}\right), \varrho\left(w^{*}\right)\right] \tag{34}
\end{equation*}
$$

for all $w, v \in S$. In view of the 2-torsion freeness of S, using (34) into (33), we obtain

$$
\begin{equation*}
[w, v] \varrho\left(h_{z}\right)+\left[\varrho(w), v \varrho\left(h_{z}\right)\right]=0 \tag{35}
\end{equation*}
$$

for all $w, v \in S$. In (35), substituting $w v$ for v and employing Lemma 1.6, we obtain

$$
w[w, v] \varrho\left(h_{z}\right)+w\left[\varrho(w), v \varrho\left(h_{z}\right)\right]+[\varrho(w), w] v \varrho\left(h_{z}\right)=0
$$

for all $w, v \in S$ and using (35) again, we get $[\varrho(w), w] S \varrho\left(h_{z}\right)=\{0\}$. As S is prime, from the last relation we conclude that either $[\varrho(w), w]=0$ for all $w \in S$ or $\varrho\left(h_{z}\right)=0$. If $[\varrho(w), w]=0$ for all $w \in S$, then by Lemma $1.10, S$ is commutative. Secondly if $\varrho\left(h_{z}\right)=0$, then by Lemma 1.9 , we have $\varrho\left(k_{z}\right)=0$. Substituting $v k_{z}$ for v in (32) and then using $\varrho\left(k_{z}\right)=0$, we have

$$
\varrho\left(\left[w, v^{*}\right]\right)^{\prime}+\varrho\left(\left[v, w^{*}\right]\right)+\left[\varrho(w), \varrho\left(v^{*}\right)\right]^{\prime}+\left[\varrho(v), \varrho\left(w^{*}\right)\right]=0
$$

for all $w, v \in S$, which further gives

$$
\begin{equation*}
\varrho\left[w, v^{*}\right]+\left[\varrho(w), \varrho\left(v^{*}\right)\right]=\varrho\left(\left[v, w^{*}\right]\right)+\left[\varrho(v), \varrho\left(w^{*}\right)\right] \tag{36}
\end{equation*}
$$

for all $w, v \in S$. As S is 2-torsion free, using (36) into (32), we obtain

$$
\varrho\left[w, v^{*}\right]+\left[\varrho(w), \varrho\left(v^{*}\right)\right]=0
$$

and by replacing v by v^{*}, it further gives

$$
\begin{equation*}
\varrho[w, v]+[\varrho(w), \varrho(v)]=0 \tag{37}
\end{equation*}
$$

for all $w, v \in S$. In view of Lemma 1.6, replacing v by $v w$ in (37) and then using (37) again, we get

$$
\begin{equation*}
[w, v] \varrho(w)+[\varrho(w), v] \varrho(w)+\varrho(v)[\varrho(w), w]=0 \tag{38}
\end{equation*}
$$

for all $w, v \in S$. In (38) replacing v by $r v$ and using Lemma 1.6, we obtain

$$
\begin{aligned}
& {[w, r] v \varrho(w)+r[w, v] \varrho(w)+[\varrho(w), r] v \varrho(w)} \\
& \quad+r[\varrho(w), v] \varrho(w)+r \varrho(v)[\varrho(w), w]+\varrho(r) v[\varrho(w), w]=0
\end{aligned}
$$

for all $r, w, v \in S$ and using (38) again, we have

$$
[w, r] v \varrho(w)+[\varrho(w), r] v \varrho(w)+\varrho(r) v[\varrho(w), w]=0
$$

and replacing r by w, we get

$$
\begin{equation*}
[w, w] v \varrho(w)+[\varrho(w), w] v \varrho(w)+\varrho(w) v[\varrho(w), w]=0 \tag{39}
\end{equation*}
$$

for all $w, v \in S$. Using Lemma 1.6 in (39), we can write

$$
[w, w]^{\prime} v \varrho(w)+[\varrho(w), w] v \varrho(w)+\varrho(w) v[\varrho(w), w]=0
$$

for all $w, v \in S$, which further implies

$$
\begin{equation*}
[w, w] v \varrho(w)=[\varrho(w), w] v \varrho(w)+\varrho(w) v[\varrho(w), w] \tag{40}
\end{equation*}
$$

for all $w, v \in S$. Using (40) into (39) and then by the 2-torsion freeness, we have

$$
[\varrho(w), w] v \varrho(w)+\varrho(w) v[\varrho(w), w]=0
$$

for all $w, v \in S$. Let $a=[\varrho(w), w]$ and $b=\varrho(w)$. Then we can write

$$
a v b+b v a=0
$$

and by Lemma 5 of [2], for all $w \in S$, we have either $[\varrho(w), w]=a=0$ or $\varrho(w)=b=0$. If $\varrho(w)=0$, then $\varrho=0$, a contradiction. Secondly if $[\varrho(w), w]=0$ for all $w \in S$, then commutativity of S follows through Lemma 1.10.

Theorem 2.6 is an extended form of Theorem 3.6 of [5], which can be demonstrated using the same reasoning as Theorem 2.5.

Theorem 2.6. Let ϱ be a nonzero derivation of a 2-torsion free prime $M A$ semiring S satisfying

$$
\varrho\left(u \circ u^{*}\right)+\varrho(u) \circ \varrho\left(u^{*}\right)=0
$$

for all $u \in S$. Then S is commutative.
From the aforementioned results, we can derive the following corollaries.
Corollary 2.7. Let ϱ_{1} and ϱ_{2} be derivations of a 2-torsion free prime $M A$ semiring S such that at least one of ϱ_{1} and ϱ_{2} is nonzero. If one of the following identities holds
(1) $\left[\varrho_{1}(w), \varrho_{1}(v)\right]+\varrho_{2}(w \circ v)=0$
(2) $\left[\varrho_{1}(w), \varrho_{1}(v)\right]+\varrho_{2}\left(w^{\prime} \circ v\right)=0$
for all $v, w \in S$, then S is commutative.
Corollary 2.8. Let ϱ_{1} and ϱ_{2} be derivations of a 2-torsion free prime MAsemiring S such that at least one of ϱ_{1} and ϱ_{2} is nonzero. If one of the following identities holds
(1) $\varrho_{1}(w) \circ \varrho_{1}(v)+\varrho_{2}[w, v]=0$
(2) $\varrho_{1}(w) \circ \varrho_{1}(v)+\varrho_{2}[w, v]^{\prime}=0$
for all $v, w \in S$, then S is commutative.
Corollary 2.9. Let S be 2-torsion free prime $M A$-semiring and ϱ be a nonzero derivation such that

$$
[\varrho(w), \varrho(v)]=0
$$

for all $w, v \in S$. Then S is commutative.
In the following, a generalized version of Herstein's theorem [16] and its extended formats established in $[5,9]$ is presented.

Corollary 2.10. Let S be 2-torsion free prime $M A$-semiring with second kind involution * and ϱ be a nonzero derivation such that

$$
\left[\varrho(w), \varrho\left(w^{*}\right)\right]=0
$$

for all $w \in S$. Then S is commutative.
Corollary 2.11. Let ϱ be a nonzero derivation of a 2-torsion free prime MAsemiring S with second kind involution * satisfying

$$
\varrho(w) \circ \varrho\left(w^{*}\right)=0
$$

for all $w \in S$. Then S is commutative.
Corollary 2.12. Let ϱ be a nonzero derivation of a 2-torsion free prime MAsemiring S with second kind involution * satisfying

$$
\left[\varrho(w), \varrho\left(w^{*}\right)\right]=0
$$

for all $w \in S$. Then S is commutative.
Corollary 2.13. Let ϱ be a nonzero derivation of a 2-torsion free prime MAsemiring S with second kind involution * satisfying

$$
\varrho\left(w \circ w^{*}\right)=0
$$

for all $w \in S$. Then S is commutative.
Corollary 2.14. Let ϱ be a nonzero derivation of a 2-torsion free prime MAsemiring S with second kind involution * satisfying

$$
\begin{equation*}
\varrho\left(w w^{*}\right)=0 \tag{41}
\end{equation*}
$$

for all $w \in S$. Then S is commutative.

Proof. In (41) replacing w by w^{*}, we obtain

$$
\begin{equation*}
\varrho\left(w^{*} w\right)=0 \tag{42}
\end{equation*}
$$

for all $w \in S$. Adding (41) and (42), we get

$$
\varrho\left(w \circ w^{*}\right)=0
$$

for all $w \in S$. By Corollary $2.13 S$ is commutative.
Corollary 2.15. Let ϱ be a nonzero derivation of a 2-torsion free prime MAsemiring S with second kind involution * satisfying

$$
\begin{equation*}
\varrho\left(w w^{*}\right)+\varrho(w) \varrho\left(w^{*}\right)=0 \tag{43}
\end{equation*}
$$

for all $w \in S$. Then S is commutative.
Proof. In (43) replacing w by w^{*} and taking pseudo inverse we get

$$
\begin{equation*}
\varrho\left(w^{*} w^{\prime}\right)+\varrho\left(w^{*}\right) \varrho\left(w^{\prime}\right)=0, \text { for all } w \in S \tag{44}
\end{equation*}
$$

Adding (43) and (44), we get

$$
\varrho\left[w, w^{*}\right]+\left[\varrho(w), \varrho\left(w^{*}\right)\right]=0,
$$

for all $w \in S$. Thus by Theorem $2.5, S$ is commutative.

3. Conclusions

We have studied a certain class of semirings (known as MA-semirings) with involution of second kind satisfying various identities involving two or three derivations. We have established commutativity and other interesting features of semirings through differential identities, with a key role for second-kind involution. The research work presented in this paper motivates others to investigate and prove the results for semiprime semirings. Furthermore, investigating the differential identities for Lie or Jordan ideals of semirings would also be an interesting open problem for the researchers.

Conflicts of interest : The authors declare that they have no conflict of interest.

Data availability : The data is available on the request.

References

1. L. Ali, M. Aslam, G. Farid and S.A. Khalek, On differential identities of Jordan ideals of semirings, Aims Math. 6 (2020), 6833-6844. DOI:10.3934/math. 2021400
2. L. Ali, Y.A. Khan, A.A. Mousa, S.A. Khalek and G. Farid, Some differential identities of MA-semirings with involution, Aims Math. 6 (2020), 2304-2314. DOI: 10.3934/math. 2021139
3. L. Ali, M. Aslam and Y.A. Khan, Some results on commutativity of MA-semirings, Indian J. Sci. Technol. 13 (2020), 3198-3203.
4. L. Ali, M. Aslam and Y.A. Khan, Commutativity of semirings with involution, Asian-Eur. J. Math. (2019), 8 pages. DOI:10.1142/S1793557120501533
5. S. Ali, A.N.A. Koam and M.A. Ansari, On *-differential identities in prime rings with involution, Hacet. J. Math. Stat. 49 (2020), 708-715. DOI:10.15672/hujms. 588726
6. A.I. Barvinok, Combinatorial Optimization and Computations in the Ring of Polynomials, DIMACS Technical Report, 1993, 93-103.
7. S. Bistarelli, Semirings for Soft Constraint Solving and Programming, Springer-Verlag, Berlin, 2004.
8. M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
9. N.A. Dar and S. Ali, On *-commuting mappings and derivations in rings with involution, Turk. J. Math. 40 (2016), 884-894.
10. M. Droste, W. Kuich and H. Vogler, Handbook of Weighted Automata, EATCS Monographs in Theoretical Computer Science, Springer, Berlin, 2009.
11. S. Eilenberg, Automata, Languages, and Machines, Academic Press, New York, vol. A, 1974.
12. Z. Ésik, W. Kuich, Modern Automata Theory, Institut für Diskrete Mathematik und Geometrie, 2012. doi.org/10.34726/2481
13. K. Glazek, A guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences with complete bibliography, Kluwer Academic Publishers, Dordrecht, 2002.
14. J.S. Golan, Semirings and their Applications, Kluwer Acad. Pub., Dodrecht, 1999.
15. U. Hebisch, H.J. Weinert, Semirings: Algebraic theory and applications in computer science, World Scientific 1998.
16. I.N. Herstein, A note on derivation II, Canad. Math. Bull. 22 (1979), 509-511.
17. J.M. Howie, Automata and Languages, Clarendon Press, Oxford, 1991.
18. M.A. Javed, M. Aslam and M. Hussain, On condition (A_{2}) of Bandlet and Petrich for inverse semiqrings, Int. Math. Forum 07 (2012), 2903-2914.
19. B.E. Johnson, Continuity of derivations on commutative Banach algebras, AM. J. MATH. 91 (1969), 1-10.
20. D.A. Jordan, On the ideals of a Lie algebra of derivations, J. Lond. Math. Soc. 02 (1986), 33-39.
21. Y.A. Khan, M. Aslam and L. Ali, Commutativity of additive inverse semirings through $f(x y)=[x, f(y)]$, Thai J. Math. (2018), 288-300.
22. V.N. Kolokoltsov, V.P. Maslov, Idempotent analysis and its applications, Kluwer Acad. Publ. Dordrecht, 1997, 243-302.
23. C. Lanski, Commutation with skew elements in rings with involution, Pac. J. Math. 83 (1979), 393-399.
24. T.K Lee, On derivations of prime rings with involution, Chin. J. Math. 20 (1992), 191-203.
25. V.P. Maslov, S.N. Samborskii, Idempotent analysis, Adv. in Sov. Math. 13 (1992), AMS, RI.
26. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 08 (1957), 1093-1100.
27. C.E. Rickart, Banach algebras with an adjoint operation, Ann. Math. 47 (1946), 528-550.
28. I.E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73-88.
29. S. Shafiq, M. Aslam and M.A. Javed, On centralizer of semiprime inverse semiring, Discuss. Math. Gen. Algebra Appl. 36 (2016), 71-84.
30. S. Shafiq and M. Aslam, A study of MA-semirings, PhD Thesis, GC University Lahore, Pakistan, 2019.

Liaqat Ali born in Lahore, Pakistan, is an active researcher at the Department of Mathematics at GC University Lahore, Pakistan. He received his M.Sc. from the University of Punjab, Pakistan, and his M.Phil. and Ph.D. from the G.C. University Lahore, Pakistan. Since 2011, he has been at Govt. MAO Graduate College, Lahore, Pakistan. His research interests include semirings, topology, functional analysis, convex functions and inequalities, and fixed point theory. He has more than twenty research articles in international journals.
Assistant Professor of Mathematics, Govt. MAO Graduate College Lahore, Pakistan.
e-mail: rehmani.pk786@gmail.com
Muhammad Aslam born in Sialkot, Pakistan, is an active researcher at the Department of Mathematics, GC University Lahore, Pakistan. He received his M.Sc., M.Phil., and Ph.D. at the Quaid-e-Azam University in Islamabad, Pakistan. Since 1995, he has been at GC University in Lahore, Pakistan. His research interests include ring theory, Bck- algebras, ordered structures, group theory, topology, functional analysis, semigroup theory, near-ring theory, fuzzy sets and logic, and category theory. He has more than seventy research articles in international journals.
Professor of Mathematics, G.C. University Lahore, Pakistan.
email: aslam298@gcu.edu.pk
Mawahib Elamin born in Sudan, is an active researcher and Assistant Professor of Pure Mathematics at Qassim University, Riyadh Al-Khabra, Saudi Arabia. Her research interests are in the areas of applied mathematics including the Mathematical Methods and Models of Differential Equations and Systems. She has several research publications in reputed journals of Mathematical and Engineering Sciences.
Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia.
email: Ma.elhag@qu.edu.sa
Huda Uones Mohamed Ahamd received M.Sc. from Seoul National University and Ph.D. at University of Minnesota. Since 1992 he has been at Chungnam National University. His research interests include numerical optimization and biological computation.

Department of Mathematics, Faculty of arts and science, Sarat Abida, King Khalid University, Saudi Arabia.

email: hudauones1987@gmail.com

Newma Yahia received M.Sc. from Seoul National University and Ph.D. at University of Minnesota. Since 1992 he has been at Chungnam National University. His research interests include numerical optimization and biological computation.
Department of Mathematics, College of Science, Tabuk University, Saudi Arabia. email: n_haron@ut.edu.sa

Laxmi Rathour born in Anuppur, India and active researcher at Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl 796 012, Mizoram, India. She received her Master's degree from Department of Mathematics, Indira Gandhi National Tribal University, Amarkantak, M.P., India. She has research interests in the areas of pure
and applied mathematics specially Convex Optimization, Nonlinear analysis and optimization, Approximation theory, Fixed Point Theory and applications, Operation Research etc. In the meantime, she has published several scientific and professional papers in the country and abroad. Moreover, she serves voluntary as reviewer for Mathematical Reviews (USA) and Zentralblatt Math (Germany).
Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl 796 012, Mizoram, India.
e-mail: laxmirathour817@gmail.com

[^0]: Received October 13, 2023. Revised December 7, 2023. Accepted December 9, 2023. * Corresponding author.
 (C) 2024 KSCAM.

