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ON COMMUTING CONDITIONS OF SEMIRINGS

WITH INVOLUTION
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Abstract. In this research article, we study a class of semirings with

involution. Differential identities involving two or three derivations of a

semiring with second kind involution are investigated. It is analyzed that
how these identities, with a special role for second kind involution, bring

commutativity to semirings.
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1. Introduction

The theory of semirings has tremendous and direct applications in the sci-
ences. For instance, idempotent analysis based on additive inverse semirings
has interesting applications in quantum physics (see[22, 25]) and the same al-
gebraic structure is used to develop the formal languages and automata theory
[11, 17, 12, 7, 10]. One can find the applications of semirings in other fields of
science and mathematics such as theoretical computer sciences and engineering,
parallel computational systems, optimization theory, combinatorics, functional
analysis, topology, graph theory, Euclidean geometry, mathematical modeling of
quantum physics ( see [13, 6, 14, 15]). Javed et al. [18] defined MA-semiring as

an additive inverse semirings S with absorbing zero ′0′ satisfying w +w
′

∈ Z(S)

for all w ∈ S, where Z(S) is the center of S and w
′

is the pseudo inverse of
w. In general, the notion of commutators satisfying Jacobian identities that
is not sustainable in semirings, is a peculiarity of MA-semirings. The class of
MA-semirings has a significant potential to accommodate the study of deriva-
tions satisfying different identities on semirings with involution [2, 4, 3] and
without involution [1, 21, 29] for probing commuting conditions. The class of
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MA-semirings properly contains the class of rings. In fact, every ring is an MA-
semiring but converse may not be true in general. In the following we present
some examples of MA-semirings which are not rings.

Example 1.1. Let (Z,+, .) be the ring of integers and I(Z) be the collection
of all ideals of Z. Consider the set S = M2(Z) × I(Z) and let u = (A1, I), v =
(A2, J) ∈ S. Define addition ⊕ and multiplication ⊙ by u⊕ v = (A1 +A2, I + J)
and u⊙ v = (A1A2, IJ). Then (S,⊕,⊙) is an example of a proper MA-semiring.

Example 1.2. Let Z be the set of integers, Z+0 be the set of all non-negative
integers and R = Z ×Z+0 . Define addition ⊕ and multiplication ⊙ by (u1, v1) ⊕
(u2, v2) = (u1+u2, v1∨v2) and (u1, v1)⊙(u2, v2) = (u1.u2, v1.v2), where v1∨v2 =
max{v1, v2}. Then the triplet (R,⊕,⊙) forms an MA-semiring which is not a
ring.

Example 1.3. [30] Let (R,+, .) be a ring and L be a distributive lattice. Con-
sider the set S = R×L and let u = (r1, d1), v = (r2, d2) ∈ S. Define addition ⊕ and
multiplication ⊙ respectively as u⊕v = (r1+r2, d1∨d2) and u⊙v = (r1r2, d1∧d2),
where ∨ and ∧ indicate join and meet respectively. Then (S,⊕,⊙) forms an MA-
semiring which is not a ring.

For the ring theoretical background and motivated sources, we would like to refer
[8, 23, 24, 26]). Banach ∗-algebra is a special example of ring with involution in
functional analysis (see [19, 20, 27, 28]).
We now state some definitions and basic notions which are pertinent to the main
section. Throughout this section S denotes an MA-semiring unless otherwise
mentioned. Involution is an additive mapping ∗ ∶ S Ð→ S that satisfies (a∗)∗ = a
and (ab)∗ = b∗a∗ for all a, b ∈ S. The sets of Hermitian and skew Hermitian
elements are respectively denoted and defined as H(S) = {a ∈ S ∶ a∗ = a} and

K(S) = {a ∈ S ∶ a∗ = a
′

}. Involution is of first kind if Z(S) ⊆ H(S) otherwise
it is of second kind. The examples of first and second kind involution for MA-
semirings are presented in the following.

Example 1.4. Consider the MA-semiring (S,⊕,⊙) as described in Example 1.1.
Define a mapping ∗ ∶ S Ð→ S by (A, I)∗ = (AT , I), where AT is the transpose of
A. The mapping ∗ defines an involution on S. We further see that Z(S) ⊆H(S),
therefore ∗ is an involution of first kind.

Example 1.5. Consider the MA-semiring (R,⊕,⊙) as described in Example
1.2. Let

MR =

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w v u x
0 w 0 u

0 0 w v
′

0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∶ u, v,w, x ∈ R

⎫⎪⎪
⎬
⎪⎪⎭

,

where v
′

is the pseudo inverse of v. Then MR forms an MA-semiring under
matrix addition and multiplication. Next, we define a mapping ∗ ∶MR Ð→MR
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by
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w v u x
0 w 0 u

0 0 w v
′

0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w v u x
′

0 w 0 u

0 0 w v
′

0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The mapping ∗ defines an involution on MR. We further see that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 x
0 w 0 0
0 0 w 0
0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Z(MR)

for all w,x ∈ R. For

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 x
0 w 0 0
0 0 w 0
0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with x = (u1, v1) and u1 ≠ 0, we can find

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 x
0 w 0 0
0 0 w 0
0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 x
′

0 w 0 0
0 0 w 0
0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This means

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 x
0 w 0 0
0 0 w 0
0 0 0 w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∉H(MR).

Thus Z(MR) ⊈H(MR) and hence ∗ is an involution of second kind.

An additive mapping ϱ ∶ S Ð→ S is a derivation if ϱ(ab) = ϱ(a)b + aϱ(b). The
Jordan product or anti-commutator of a, b ∈ S is defined as a ○ b = ab + ba. The

commutator of a, b ∈ S is defined as [a, b] = ab + b
′

a. A mapping ϱ ∶ S Ð→ S is
commuting (centralizing) if [ϱ(v), v] = 0 ([[ϱ(v), v], t] = 0), for all v, t ∈ S.
One can find MA-semirings, in which well known properties of rings are not valid
in general. For example if S is an MA-semiring and s, t ∈ S, then st = ts does
not admit [s, t] = 0; [s, s] ≠ 0 if s ≠ 0; if ϱ is derivation of S and s ∈ Z(S), then
ϱ(s) may not belong to Z(S).
We now compose some lemmas which will be useful for proving the main results.

Lemma 1.6. Let S be an MA-semiring and ϱ be a derivation of S. Then for
all a, b, c ∈ S, z ∈ Z(S), we have

(1) [a, ab] = a[a, b]
(2) [a, bc] = [a, b]c + b[a, c]
(3) [ab, c] = a[b, c] + [a, c]b

(4) (ab)
′

= a
′

b = ab
′

(5) [a, b] + [b, a] = b(a + a
′

) = a(b + b
′

)
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(6) [a, b]
′

= [a, b
′

] = [a
′

, b] = [b, a]
(7) a ○ (b + c) = a ○ b + a ○ c

(8) ϱ(a
′

) = (ϱ(a))
′

(9) [a, bz] = z[a, b] = [a, b]z

(10) [a, a] = [a, a]
′

(11) a + b = 0 ⇒ a = b
′

, however the converse may not hold in general.

For more one can see [18, 29].

Throughout the sequel hz ∈ Z(S) ∩H(S) and kz ∈ Z(S) ∩K(S), for the sake
of convenience, unless mentioned otherwise.

Lemma 1.7. [3] Let S be a semiprime MA-semiring with second kind involution
∗. Then Z(S) ∩K(S) ≠ {0} and therefore Z(S) ∩H(S) ≠ {0}.

From the definition of Hermitian and the skew Hermitian elements of an MA-
semiring with second kind involution, one can observe the following.

Remark 1.8. If S is an MA-semiring with second kind involution ∗, then

(1) k2 ∈H(S).
(2) hhz ∈H(S).
(3) kkz ∈H(S).
(4) hkz ∈K(S).

Lemma 1.9. Let ϱ be a derivation of a 2-torsion free prime MA-semiring S
with second kind involution ∗. If ϱ(hz) = 0 for any hz ∈ Z(S) ∩ H(S), then
ϱ(kz) = 0 for any kz ∈ Z(S) ∩K(S).

Proof. By the Observation 1.8, for any kz ∈ Z(S) ∩K(S), we have k2z ∈ Z(S) ∩
H(S). Then ϱ(k2z) = 2kzϱ(kz) = 0. As S is 2-torsion free, we find kzϱ(kz) = 0,
which further implies kzSϱ(kz) = {0}. As ∗ is of second kind and S is prime, by
Lemma 1.7, we obtain ϱ(kz) = 0. □

Lemma 1.10. Let S be a prime MA-semiring S and ϱ be a nonzero derivation
satisfying

[ϱ(w),w] = 0 (1)

for all w ∈ S. Then S is commutative.

Proof. Linearizing [ϱ(w),w] = 0 and using it again, we get

[ϱ(w), u] + [ϱ(u),w] = 0 (2)

for all w,u ∈ S. In (2) substituting uw for u, we get

[ϱ(w), u]w + u[ϱ(w),w] + [ϱ(u),w]w + u[ϱ(w),w] + [u,w]ϱ(w) = 0

for all w,u ∈ S and therefore

([ϱ(w), u] + [ϱ(u),w])w + u[ϱ(w),w] + u[ϱ(w),w] + [u,w]ϱ(w) = 0

for all w,u ∈ S. Using (1) and (2) again, we get

[u,w]ϱ(w) = 0 (3)
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for all w,u ∈ S. In (3), substituting sv for u and using (3) again, we get
[s,w]Sϱ(w) = {0} for all s,w ∈ S. By the primeness of S, we have [s,w] = 0
or ϱ(w) = 0 for all s,w ∈ S. This means S = S1 ∪ S2, where S1 = {w ∈ S ∶
[s,w] = 0, for all s ∈ S} and S2 = {w ∈ S ∶ ϱ(w) = 0}. We claim that either
S1 = S or S2 = S. For this we show that either S2 ⊆ S1 or S1 ⊆ S2. As-
suming on the contrary, let w1 ∈ S1 ∖ S2 and w2 ∈ S2 ∖ S1. One can observe
that w1 + w2 ∈ S1 + S2 ⊆ S1 ∪ S2 = S, therefore we have either w1 + w2 ∈ S1 or
w1+w2 ∈ S2. If w1+w2 ∈ S1, then 0 = [w1+w2, s] = [w1, s]+[w2, s] = [w2, s] for all
s ∈ S, which means that w2 ∈ S1, a contradiction. Secondly if w1 +w2 ∈ S2, then
0 = ϱ(w1 +w2) = ϱ(w1) + ϱ(w2) = ϱ(w1) which implies that w1 ∈ S2, a contradic-
tion. Therefore we conclude that either S1 = S or S2 = S. If S2 = S, then ϱ = 0,
which contradicts the hypothesis. Secondly S is commutative if S1 = S. □

Shakir et al. [5] investigated ∗-differential identities involving pairs of deriva-
tions of prime rings with second kind involution ∗. In the main section of this
paper, we establish the results of [5] for a certain class of semirings known as
MA-semirings with second kind involution. We also present a generalized ver-
sion of a result of Herstein [16].

2. Main results

An extended version of Theorem 3.1 of [5] is given in the following.

Theorem 2.1. Let ϱ1 and ϱ2 be two derivations of S such that at least one of
ϱ1 and ϱ2 is non zero. If

[ϱ1(w), ϱ1(w
∗
)] + ϱ2(w ○w

∗
) = 0 (4)

for all w ∈ S, then S is commutative.

Proof. Case 1: If ϱ1 ≠ 0 and ϱ2 = 0, then from (4), we obtain

[ϱ1(w), ϱ1(w
∗
)] = 0 (5)

for all w ∈ S. Linearizing (5) and using (5) again, we get

[ϱ1(w), ϱ1(v
∗
)] + [ϱ1(v), ϱ1(w

∗
)] = 0 (6)

for all w, v ∈ S. Substituting vhz for v in (6) and employing Lemma 1.6, we get

([ϱ1(w), ϱ1(v
∗
)] + [ϱ1(v), ϱ1(w

∗
)])hz

+ [ϱ1(w), v
∗ϱ1(hz)] + [vϱ1(hz), ϱ1(w

∗
)] = 0

for all w, v ∈ S. Using (6) again, we get

[ϱ1(w), v
∗ϱ1(hz)] + [vϱ1(hz), ϱ1(w

∗
)] = 0. (7)

for all w, v ∈ S. Substituting vkz for v in (7) and employing Lemma 1.6, we
obtain

([ϱ1(w), v
∗ϱ1(hz)]

′

+ [vϱ1(hz), ϱ1(w
∗
)])Skz = {0}
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for all w, v ∈ S. As ∗ is of second kind and S is prime, using Lemma 1.7, we
obtain

[ϱ1(w), v
∗ϱ1(hz)]

′

+ [vϱ1(hz), ϱ1(w
∗
)] = 0

for all w, v ∈ S and hence by the property of pseudo inverse, we have

[ϱ1(w), v
∗ϱ1(hz)] = [vϱ1(hz), ϱ1(w

∗
)] (8)

for all w, v ∈ S. Using (8) into (7), we obtain [ϱ1(w), v
∗ϱ1(hz)] = 0 and substi-

tuting v∗ for v, we have
[ϱ1(w), vϱ1(hz)] = 0 (9)

for all w, v ∈ S. In (9), substituting rv for v and using Lemma 1.6, we obtain

r[ϱ1(w), vϱ1(hz)] + [ϱ1(w), r]vϱ1(hz) = 0

for all r,w, v ∈ S. Using (9) in the last relation, we obtain

[ϱ1(w), r]Sϱ1(hz) = {0}.

As S is prime, we obtain either [ϱ1(w), r] = 0 or ϱ1(hz) = 0. Assume that
[ϱ1(w), r] = 0, for all w, r ∈ S. Then by Lemma 1.10, S is commutative. In view
of Lemma 1.9, from the second possibility, we have ϱ1(kz) = 0. Substituting vkz
for v in (6) and using the fact that ϱ1(kz) = 0, we obtain

[ϱ1(w), ϱ1(v
∗
)]
′

+ [ϱ1(v), ϱ1(w
∗
)] = 0

for all w, v ∈ S and therefore

[ϱ1(w), ϱ1(v
∗
)] = [ϱ1(v), ϱ1(w

∗
)] (10)

for all w, v ∈ S. As S is 2-torsion freeness, using (10) into (9), we obtain

[ϱ1(w), ϱ1(v)] = 0 (11)

for all w, v ∈ S. In (11) substituting wv for v and using Lemma 1.6, we obtain

w[ϱ1(w), ϱ1(v)] + [ϱ1(w),w]ϱ1(v) + ϱ1(w)[ϱ1(w), v] + [ϱ1(w), ϱ1(w)]v = 0

for all w, v ∈ S. Using (11) again, we obtain

[ϱ1(w),w]ϱ1(v) + ϱ1(w)[ϱ1(w), v] = 0 (12)

for all w, v ∈ S. Substituting rv for v in (12), we have

[ϱ1(w),w]rϱ1(v) + [ϱ1(w),w]ϱ1(r)v + ϱ1(w)r[ϱ1(w), v] + ϱ1(w)[ϱ1(w), r]v = 0

for all r,w, v ∈ S and using (12) again, we obtain

[ϱ1(w),w]rϱ1(v) + ϱ1(w)r[ϱ1(w), v] = 0 (13)

for all r, v,w ∈ S. Substituting ϱ1(v) for v in (13), we get

[ϱ1(w),w]rϱ1(ϱ1(v)) + ϱ1(w)r[ϱ1(w), ϱ1(v)] = 0

for all r,w, v ∈ S. Using (11) again, we get

[ϱ1(w),w]Sϱ1(ϱ1(v)) = {0}

and by the primeness, we have either [ϱ1(w),w] = 0 or ϱ21(v) = 0 for all v,w ∈ S.
For the first possibility, by Lemma 1.10, S is commutative. Secondly if ϱ21(v) = 0,
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then by Theorem 1 of [1], we get ϱ1 = 0, a contradiction.
Case 2: If ϱ1 = 0 and ϱ2 ≠ 0, then we obtain

ϱ2(w ○w
∗
) = 0

for all w ∈ S, from (4). Then by Theorem 2.6 of [3], S is commutative.
Case 3:If ϱ1 ≠ 0 and ϱ2 ≠ 0. Substituting w∗ for w in (4), we get

[ϱ1(w
∗
), ϱ1(w)] + ϱ2(w

∗
○w) = 0

for all w ∈ S. As w ○ v = v ○w and since [w, v] = [v,w]
′

, for all v,w ∈ S, therefore

[ϱ1(w), ϱ1(w
∗
)]
′

+ ϱ2(w ○w
∗
) = 0

for all v,w ∈ S and by the above mentioned identities, we can further write

[ϱ1(w), ϱ1(w
∗
)] = ϱ2(w ○w

∗
) (14)

for all w ∈ S. Using (14) into (4), we get 2ϱ2(w ○ w
∗) = 0 for all w ∈ S and

because of the 2-torsion freeness of S, we have ϱ2(w ○w
∗) = 0 for all w ∈ S. The

remaining part follows through same arguments of Case 2.
□

Theorem 2.2 is an extended form of Theorem 3.2 of [5], which can be established
through the similar set of calculations of the proof of Theorem 2.1.

Theorem 2.2. Let ϱ1 and ϱ2 be derivations of S such that at least one of ϱ1
and ϱ2 is non zero. If

[ϱ1(w), ϱ1(w
∗
)] + ϱ2(w

′

○w∗) = 0

for all w ∈ S, then S is commutative.

In the following, Theorem 3.3 of [5] is demonstrated for MA-semirings with
involution.

Theorem 2.3. Let ϱ1 and ϱ2 be derivations of S such that at least one of ϱ1
and ϱ2 is non zero. If

ϱ1(w) ○ ϱ1(w
∗
) + ϱ2[w,w

∗
] = 0 (15)

for all w ∈ S, then S is commutative.

Proof. Case 1: If ϱ1 = 0 and ϱ2 ≠ 0, then from (15), we obtain ϱ2[w,w
∗] = 0 for

all w ∈ S and hence by Lemma 2.5 of [3], S is commutative.
Case 2:If ϱ1 ≠ 0 and ϱ2 = 0, then from (15), we obtain

ϱ1(w) ○ ϱ1(w
∗
) = 0 (16)

for all w ∈ S. Linearizing (16) and using (16) again, we get

ϱ1(w) ○ ϱ1(v
∗
) + ϱ1(v) ○ ϱ1(w

∗
) = 0 (17)

for all w ∈ S. In (16) substituting vhz for v, we find

(ϱ1(w)○ϱ1(v
∗
)+ϱ1(v)○ϱ1(w

∗
))hz +ϱ1(w)○ (v

∗ϱ1(hz))+ (vϱ1(hz))○ϱ1(w
∗
) = 0
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for all w, v ∈ S and using (17) again, we have

ϱ1(w) ○ (v
∗ϱ1(hz)) + (vϱ1(hz)) ○ ϱ1(w

∗
) = 0 (18)

for all v,w ∈ S. Substituting vkz for v in (18), we obtain

(ϱ1(w) ○ (v
∗ϱ1(hz))

′

+ (vϱ1(hz)) ○ ϱ1(w
∗
))Skz = {0}

for all w, v ∈ S. As S is prime, employing Lemma 1.7, we have

ϱ1(w) ○ (v
∗ϱ1(hz))

′

+ (vϱ1(hz)) ○ ϱ1(w
∗
) = 0

for all v,w ∈ S, which further implies

ϱ1(w) ○ (v
∗ϱ1(hz)) = (vϱ1(hz)) ○ ϱ1(w

∗
) (19)

for all v,w ∈ S. In view of the 2-torsion freeness of S, using (19) into (18), and
then substituting v∗ for v, we have ϱ1(w) ○ (vϱ1(hz)) = 0 and therefore

vϱ1(hz)ϱ1(w) + ϱ1(w)vϱ1(hz) = 0 (20)

for all w, v ∈ S. In view of Lemma 1.6, from (20), we can write

vϱ1(hz)ϱ1(w) = ϱ1(w)v
′

ϱ1(hz) (21)

for all w, v ∈ S. In (20), substituting rv for v, we get

rvϱ1(hz)ϱ1(w) + ϱ1(w)rvϱ1(hz) = 0 (22)

for all r,w, v ∈ S. Multiplying (21) by r from the left, we obtain

rvϱ1(hz)ϱ1(w) = rϱ1(w)v
′

ϱ1(hz) (23)

for all r,w, v ∈ S. Using (23) into (22), we get [ϱ1(w), r]Sϱ1(hz) = {0}. In view
of the primeness of S, employing Lemma 1.7, we obtain either [ϱ1(w), r] = 0
or ϱ1(hz) = 0. If [ϱ1(w), r] = 0, then commutativity of S follows by Lemma
1.10. On the other hand if ϱ1(hz) = 0, then by Lemma 1.9, we find ϱ1(kz) = 0.
Substituting vkz for v in (17)and hence using the primeness of S, we obtain

(ϱ1(w) ○ ϱ1(v
∗
))
′

+ ϱ1(v) ○ ϱ1(w
∗
) = 0

for all v,w ∈ S and hence

ϱ1(w) ○ ϱ1(v
∗
) = ϱ1(v) ○ ϱ1(w

∗
) (24)

for all v,w ∈ S. As S is 2-torsion free, using (24) into (17), we obtain ϱ1(w) ○
ϱ1(v

∗) = 0 which further gives

ϱ1(w)ϱ1(v) + ϱ1(v)ϱ1(w) = 0 (25)

for all w, v ∈ S. From (25), we can write

ϱ1(w)ϱ1(v) = ϱ1(v
′

)ϱ1(w) for all w, v ∈ S. (26)

for all w, v ∈ S. Substituting rw for w in (25), we obtain

rϱ1(w)ϱ1(v) + ϱ1(r)uϱ1(v) + ϱ1(v)rϱ1(w) + ϱ1(v)ϱ1(r)w = 0
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for all r,w, v ∈ S and using (25) again

r
′

ϱ1(v)ϱ1(w) + ϱ1(r)wϱ1(v) + ϱ1(v)rϱ1(w) + ϱ1(r)ϱ1(v)w
′

= 0

for all r,w, v ∈ S and after the rearrangement of the terms, we obtain

r
′

ϱ1(v)ϱ1(w) + ϱ1(v)rϱ1(w) + ϱ1(r)wϱ1(v) + ϱ1(r)ϱ1(v)w
′

= 0

for all r,w, v ∈ S. Therefore

[ϱ1(v), r]ϱ1(w) + ϱ1(r)[w,ϱ1(v)] = 0 (27)

for all r,w, v ∈ S. In (27) replacing w by ϱ1(v), we get

[ϱ1(v), r]ϱ1(ϱ1(v)) + ϱ1(r)[ϱ1(v), ϱ1(v)] = 0 (28)

for all r,w, v ∈ S. By Lemma 1.6, we can write [w,w] = [w,w]
′

for all w ∈ S,
therefore from (28) we have

[ϱ1(v), r]ϱ1(ϱ1(v)) + ϱ1(r)[ϱ1(v), ϱ1(v)]
′

= 0

for all r, v ∈ S which further implies

[ϱ1(v), r]ϱ1(ϱ1(v)) = ϱ1(r)[ϱ1(v), ϱ1(v)] (29)

for all r, v ∈ S. Using (29) into (28) and we obtain

[ϱ1(v), r]ϱ1(ϱ1(v)) = 0,

which further implies [ϱ1(v), r]Sϱ1(ϱ1(v)) = {0}. By the primeness, we find
[ϱ1(v), r] = 0 or ϱ21(v) = 0 for all v ∈ S. If ϱ21(v) = 0, then by Theorem 1 of
[1], we get ϱ1 = 0, which contradicts our assumption. On the other hand, if
[ϱ1(v), r] = 0, then commutativity of S follows through Lemma 1.10.
Case 3:If ϱ1 ≠ 0 and ϱ2 ≠ 0. In (15) replacing w by w∗, we obtain

ϱ1(w
∗
) ○ ϱ1(w) + ϱ2[w

∗,w] = 0

As w ○ v = v ○ w and [w, v] = [v,w]
′

, for all w, v ∈ S, therefore from the last
equation, we have

ϱ1(w) ○ ϱ1(w
∗
) + ϱ2[w,w

∗
]
′

= 0

which further implies

ϱ1(w) ○ ϱ1(w
∗
) = ϱ2[w,w

∗
] (30)

for all w ∈ S. As S is 2-torsion free, using (30) into (15), we obtain ϱ2[w,w
∗] = 0

for all w ∈ S. Commutativity of S follows through Lemma 2.5 of [3]. □

Following result presents the Theorem 3.4 of [5] in an extended form.

Theorem 2.4. Let ϱ1 and ϱ2 be derivations of S such that at least one of ϱ1
and ϱ2 is non zero. If

ϱ1(w) ○ ϱ1(w
∗
) + ϱ2[w,w

∗
]
′

= 0

for all w ∈ S, then S is commutative.

Following result presents an extended form of the Theorem 3.5 of [5].
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Theorem 2.5. Let ϱ be a nonzero derivation of S satisfying

ϱ([w,w∗]) + [ϱ(w), ϱ(w∗)] = 0 (31)

for all w ∈ S. Then S is commutative.

Proof. Linearizing (31) and again using (31), we obtain

ϱ([w, v∗]) + ϱ([v,w∗]) + [ϱ(w), ϱ(v∗)] + [ϱ(v), ϱ(w∗)] = 0 (32)

for all w, v ∈ S. Substituting vhz for v in (32), and using Lemma 1.6, we obtain

(ϱ[w, v∗] + ϱ[v,w∗] + [ϱ(w), ϱ(v∗)] + [ϱ(v), ϱ(w∗)])hz

+ [w, v∗]ϱ(hz) + [v,w
∗
]ϱ(hz) + [ϱ(w), v

∗ϱ(hz)] + [vϱ(hz), ϱ(w
∗
)] = 0

for all w, v ∈ S. Using (32) in the last identity and then after the replacement of
v by v∗, we obtain

[w, v]ϱ(hz) + [ϱ(w), vϱ(hz)] + [v
∗,w∗]ϱ(hz) + [v

∗ϱ(hz), ϱ(w
∗
)] = 0 (33)

for all w, v ∈ S. In (33) substituting vkz for v, we get

([w, v]ϱ(hz) + [ϱ(w), vϱ(hz)] + [v
∗,w∗]

′

ϱ(hz) + [v
∗ϱ(hz), ϱ(w

∗
)]
′

)Skz = {0}

for all w, v ∈ S. In view of Lemma 1.7, using the primeness of S, we have

([w, v]ϱ(hz) + [ϱ(w), vϱ(hz)] + [v
∗,w∗]

′

ϱ(hz) + [v
∗ϱ(hz), ϱ(w

∗
)]
′

) = 0

for all w, v ∈ S and therefore

[w, v]ϱ(hz) + [ϱ(w), vϱ(hz)] = [v
∗,w∗]ϱ(hz) + [v

∗ϱ(hz), ϱ(w
∗
)] (34)

for all w, v ∈ S. In view of the 2-torsion freeness of S, using (34) into (33), we
obtain

[w, v]ϱ(hz) + [ϱ(w), vϱ(hz)] = 0 (35)

for all w, v ∈ S. In (35), substituting wv for v and employing Lemma 1.6, we
obtain

w[w, v]ϱ(hz) +w[ϱ(w), vϱ(hz)] + [ϱ(w),w]vϱ(hz) = 0

for all w, v ∈ S and using (35) again, we get [ϱ(w),w]Sϱ(hz) = {0}. As S
is prime, from the last relation we conclude that either [ϱ(w),w] = 0 for all
w ∈ S or ϱ(hz) = 0. If [ϱ(w),w] = 0 for all w ∈ S, then by Lemma 1.10, S is
commutative. Secondly if ϱ(hz) = 0, then by Lemma 1.9, we have ϱ(kz) = 0.
Substituting vkz for v in (32) and then using ϱ(kz) = 0, we have

ϱ([w, v∗])
′

+ ϱ([v,w∗]) + [ϱ(w), ϱ(v∗)]
′

+ [ϱ(v), ϱ(w∗)] = 0

for all w, v ∈ S, which further gives

ϱ[w, v∗] + [ϱ(w), ϱ(v∗)] = ϱ([v,w∗]) + [ϱ(v), ϱ(w∗)] (36)

for all w, v ∈ S. As S is 2-torsion free, using (36) into (32), we obtain

ϱ[w, v∗] + [ϱ(w), ϱ(v∗)] = 0



On commuting conditions of semirings with involution 427

and by replacing v by v∗, it further gives

ϱ[w, v] + [ϱ(w), ϱ(v)] = 0 (37)

for all w, v ∈ S. In view of Lemma 1.6, replacing v by vw in (37) and then using
(37) again, we get

[w, v]ϱ(w) + [ϱ(w), v]ϱ(w) + ϱ(v)[ϱ(w),w] = 0 (38)

for all w, v ∈ S. In (38) replacing v by rv and using Lemma 1.6, we obtain

[w, r]vϱ(w) + r[w, v]ϱ(w) + [ϱ(w), r]vϱ(w)

+ r[ϱ(w), v]ϱ(w) + rϱ(v)[ϱ(w),w] + ϱ(r)v[ϱ(w),w] = 0

for all r,w, v ∈ S and using (38) again, we have

[w, r]vϱ(w) + [ϱ(w), r]vϱ(w) + ϱ(r)v[ϱ(w),w] = 0

and replacing r by w, we get

[w,w]vϱ(w) + [ϱ(w),w]vϱ(w) + ϱ(w)v[ϱ(w),w] = 0 (39)

for all w, v ∈ S. Using Lemma 1.6 in (39), we can write

[w,w]
′

vϱ(w) + [ϱ(w),w]vϱ(w) + ϱ(w)v[ϱ(w),w] = 0

for all w, v ∈ S, which further implies

[w,w]vϱ(w) = [ϱ(w),w]vϱ(w) + ϱ(w)v[ϱ(w),w] (40)

for all w, v ∈ S. Using (40) into (39) and then by the 2-torsion freeness, we have

[ϱ(w),w]vϱ(w) + ϱ(w)v[ϱ(w),w] = 0

for all w, v ∈ S. Let a = [ϱ(w),w] and b = ϱ(w). Then we can write

avb + bva = 0

and by Lemma 5 of [2], for all w ∈ S, we have either [ϱ(w),w] = a = 0 or
ϱ(w) = b = 0. If ϱ(w) = 0, then ϱ = 0, a contradiction. Secondly if [ϱ(w),w] = 0
for all w ∈ S, then commutativity of S follows through Lemma 1.10. □

Theorem 2.6 is an extended form of Theorem 3.6 of [5], which can be demon-
strated using the same reasoning as Theorem 2.5.

Theorem 2.6. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S satisfying

ϱ(u ○ u∗) + ϱ(u) ○ ϱ(u∗) = 0

for all u ∈ S. Then S is commutative.

From the aforementioned results, we can derive the following corollaries.

Corollary 2.7. Let ϱ1 and ϱ2 be derivations of a 2-torsion free prime MA-
semiring S such that at least one of ϱ1 and ϱ2 is nonzero. If one of the following
identities holds

(1) [ϱ1(w), ϱ1(v)] + ϱ2(w ○ v) = 0
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(2) [ϱ1(w), ϱ1(v)] + ϱ2(w
′

○ v) = 0

for all v,w ∈ S, then S is commutative.

Corollary 2.8. Let ϱ1 and ϱ2 be derivations of a 2-torsion free prime MA-
semiring S such that at least one of ϱ1 and ϱ2 is nonzero. If one of the following
identities holds

(1) ϱ1(w) ○ ϱ1(v) + ϱ2[w, v] = 0

(2) ϱ1(w) ○ ϱ1(v) + ϱ2[w, v]
′

= 0

for all v,w ∈ S, then S is commutative.

Corollary 2.9. Let S be 2-torsion free prime MA-semiring and ϱ be a nonzero
derivation such that

[ϱ(w), ϱ(v)] = 0

for all w, v ∈ S. Then S is commutative.

In the following, a generalized version of Herstein’s theorem [16] and its extended
formats established in [5, 9] is presented.

Corollary 2.10. Let S be 2-torsion free prime MA-semiring with second kind
involution ∗ and ϱ be a nonzero derivation such that

[ϱ(w), ϱ(w∗)] = 0

for all w ∈ S. Then S is commutative.

Corollary 2.11. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S with second kind involution ∗ satisfying

ϱ(w) ○ ϱ(w∗) = 0

for all w ∈ S. Then S is commutative.

Corollary 2.12. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S with second kind involution ∗ satisfying

[ϱ(w), ϱ(w∗)] = 0

for all w ∈ S. Then S is commutative.

Corollary 2.13. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S with second kind involution ∗ satisfying

ϱ(w ○w∗) = 0

for all w ∈ S. Then S is commutative.

Corollary 2.14. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S with second kind involution ∗ satisfying

ϱ(ww∗) = 0 (41)

for all w ∈ S. Then S is commutative.
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Proof. In (41) replacing w by w∗, we obtain

ϱ(w∗w) = 0 (42)

for all w ∈ S. Adding (41) and (42), we get

ϱ(w ○w∗) = 0

for all w ∈ S. By Corollary 2.13 S is commutative. □

Corollary 2.15. Let ϱ be a nonzero derivation of a 2-torsion free prime MA-
semiring S with second kind involution ∗ satisfying

ϱ(ww∗) + ϱ(w)ϱ(w∗) = 0 (43)

for all w ∈ S. Then S is commutative.

Proof. In (43) replacing w by w∗ and taking pseudo inverse we get

ϱ(w∗w
′

) + ϱ(w∗)ϱ(w
′

) = 0, for all w ∈ S. (44)

Adding (43) and (44), we get

ϱ[w,w∗] + [ϱ(w), ϱ(w∗)] = 0,

for all w ∈ S. Thus by Theorem 2.5, S is commutative. □

3. Conclusions

We have studied a certain class of semirings (known as MA-semirings) with
involution of second kind satisfying various identities involving two or three
derivations. We have established commutativity and other interesting features
of semirings through differential identities, with a key role for second-kind invo-
lution. The research work presented in this paper motivates others to investigate
and prove the results for semiprime semirings. Furthermore, investigating the
differential identities for Lie or Jordan ideals of semirings would also be an in-
teresting open problem for the researchers.

Conflicts of interest : The authors declare that they have no conflict of
interest.
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