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A NEW STUDY IN EUCLID’S METRIC SPACE

CONTRACTION MAPPING AND PYTHAGOREAN

RIGHT TRIANGLE RELATIONSHIP

SAEED A.A. AL-SALEHI∗, MOHAMMED M.A. TALEB, V.C. BORKAR

Abstract. Our study explores the connection between the Pythagorean

theorem and the Fixed-point theorem in metric spaces. Both of which
center around the concepts of distance transformations and point relation-

ships. The Pythagorean theorem deals with right triangles in Euclidean

space, emphasizing distances between points. In contrast, fixed-point the-
orems pertain to the points that remain unchanged under specific transfor-

mations thereby preserving distances. The article delves into the intrinsic
correlation between these concepts and presents a novel study in Euclidean

metric spaces, examining the relationship between contraction mapping

and Pythagorean Right Triangles. Practical applications are also discussed
particularly in the context of image compression. Here, the integration of

the Pythagorean right triangle paradigm with contraction mappings results

in efficient data representation and the preservation of visual data relation-
ships.This illustrates the practical utility of seemingly abstract theories in

addressing real-world challenges.
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1. Introduction

The Pythagorean theorem emerged in ancient Greece, attributed to the math-
ematician Pythagoras or his followers. It states that in a right-angled triangle,
the square of the length of the hypotenuse (the side opposite the right angle) is
equal to the sum of the squares of the lengths of the other two sides[1]. Mathe-
matically, it can be written as:
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Figure 1

−→c 2 = −→a 2 +
−→
b 2. (1)

(See figure no.1). This theorem has profound implications in geometry and
mathematics (see [2, 3, 8]). On the other hand, the fixed point theory origi-
nated from the work of mathematician David Brouwer in the early 20th century.
Brouwer’s fixed point theorem proved in 1912. The statement is that any con-
tinuous mapping on a closed interval to itself must have at least one fixed point.
This concept is a fundamental tool in various branches of mathematics, such as
topology, functional analysis, and some other fields like economics and computer
science. (see [4, 5, 9]).

Banach contraction principle 1.1 [6] This principle states that, if (X, d)
is a complete metric space and T : X → X is a contraction map,

i.e., d(T (x), T (y)) ≤ λd(x, y),∀x, y ∈ X,λ ∈ [0, 1) (2)

where λ is a constant, then T has a unique fixed point.

Definition 1.2 [7] Let a self-map T : X → X be defined on a metric space
(X, d), if ∃k ∈ (0, 1) such that, ∀x, y ∈ X then, d(T (x), T (y)) ≤ kd(x, y).

Note: In our work, we introduced a novel idea that establishes a connection
between the Pythagorean theorem and the fixed-point theorem, thereby delving
into a historically unexplored topic. This conceptual link represents a significant
advancement in our field. The unique synthesis of these mathematical princi-
ples in our research enhances understanding and provides new opportunities for
exploration and application. Our work is groundbreaking in its exploration of
this uncharted territory, emphasizing the originality and importance of our con-
tribution to the mathematical discourse.
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Figure 2

2. Main results

In our article, we present a new study on fixed point theorems for a contraction
mapping on Euclid’s metric spaces X ⊂ R. By using Pythagorean theorem, we
give some definitions, theorems and examples to support our study as follows:
If we draw a right angled triangle ∆(x, y,m) at ∠m on a hemisphere in Euclidean
metric spaces (X, d) such that, x, y,m ∈ X be vertices the triangle, (see figure

no.2). Let T (x) on |−→mx| and T (y) on |−→my|. We draw the line |
−−−−−−→
T (x)T (y)|, the

∆(x,m, y) satisfies a Pythagorean theorem, i.e., |−→xy|2 = |−→xm|2 + |−→ym|2.
Now, if we denote the side |−→xy| by d(x, y) such that d(x, y) is the distance between

x and y. Similarly, we denote the side |
−−−−−−→
T (x)T (y)| by d(T (x), T (y)). Suppose that,

x = (x1, x2), y = (y1, y2) and T (x) = (Tx1, Tx2), T (y) = (Ty1, Ty2), so that

d(x, y) = |−→xy| =
√

(x1 − y1)
2
+ (x2 − y2)

2
(3)

and

d(T (x), T (y)) = |
−−−−−−→
T (x)T (y)| =

√
(Tx1 − Ty1)

2
+ (Tx2 − Ty2)

2
. (4)

Also, if we denote the square of distances d2(x, y), d2(T (x), T (y)) as follows:

d2(x, y) = d(x, y)2 = (x1 − y1)
2 + (x2 − y2)

2 (5)

and

d2(T (x), T (y)) = d(T (x), T (y))2 = (Tx1 − Ty1)
2 + (Tx2 − Ty2)

2. (6)

Suppose that, ∀X ⊂ R, T : X → X be a self map, then the triangle ∆(x,m, y)
satisfies the Pythagorean theorem

d2(x, y) = d2(x,m) + d2(y,m). (7)
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Note: From figure no.3, we get the triangle ∆(x,m, y) which also satisfies the
Pythagorean properties as follows:

d(x, T (x))

d(x,m)
=

d(y, T (y))

d(y,m)
=

d(T (x), T (y))

d(x, y)
. (8)

Theorem 2.1. Let’s assume that the triangle ∆(x,m, y) is right-angled at m
and the self-map T : X → X is defined on Euclid’s metric space (X, d). If
T (x), T (y) on the sides |−→xm|, |−→ym| respectively, if the triangle ∆(x,m, y) sat-
isfies the Pythagorean theorem, then T is a contraction mapping such that,
d(T (x), T (y)) ≤ λd(x, y),∀x, y ∈ X,λ ∈ (0, 1).

Proof. There are several cases, we have only explain three cases until the idea
becomes clear.
Case (1): When d(x, T (x)) = d(T (x),m), d(y, T (y)) = d(T (y),m). Now when
the the triangle ∆(x,m, y) satisfies the Pythagorean theorem, we get

d2(x, y) = d2(x,m) + d2(y,m), (9)

but

d(x,m) = d(x, T (x)) + d(T (x),m) (10)

and

d(y,m) = d(y, T (y)) + d(T (y),m), (11)

put equations (10), (11) in (9), we get

d2(x, y) = [d(x, T (x)) + d(T (x),m)]2 + [d(y, T (y)) + d(T (y),m)]2 (12)

= d2(x, T (x)) + 2d(x, T (x))d(T (x),m) + d2(T (x),m) + d2(y, T (y))

+ 2d(y, T (y))d(T (y),m) + d2(T (y),m),

but d2(T (x),m) + d2(T (y),m) = d2(T (x), T (y)) in (12), we get

d2(x, y) = d2(x, T (x)) + 2d(x, T (x))d(T (x),m) + d2(y, T (y)) (13)

+ 2d(y, T (y))d(T (y),m) + d2(T (x), T (y)).

From (13), we get either

2d(x, T (x))d(T (x),m) + 2d(y, T (y))d(T (y),m) =
1

2
d2(x, y) (14)

and

d2(x, T (x)) + d2(y, T (y)) =
1

4
d2(x, y). (15)

Or

2d(x, T (x))d(T (x),m) + 2d(y, T (y))d(T (y),m) = 2d2(T (x), T (y)) (16)

and

d2(x, T (x)) + d2(y, T (y)) = d2(T (x), T (y)). (17)
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Figure 3

There are two sub-cases:
Sub-case (1-a): Put equations (14), (15) in (13), we get

d2(x, y) =
1

2
d2(x, y) +

1

4
d2(x, y) + d2(T (x), T (y)) (18)

=
3

4
d2(x, y) + d2(T (x), T (y))

⇒ d(T (x), T (y)) =
1

2
d(x, y). (19)

Sub-case (1-b): Put equations (16), (17) in (13), we get

d2(x, y) = 2d2(T (x), T (y)) + d2(T (x), T (y)) + d2(T (x), T (y)) (20)

= 4d2(T (x), T (y))

⇒ d(T (x), T (y)) =
1

2
d(x, y). (21)

So that (19), (21) are equal when d(x, T (x)) = d(T (x),m), d(y, T (y)) = d(T (y),m).
To verify the validity of case (1) and the two sub-cases related to it, see example
(2.3)
Case (2): When, d(x, T (x)) = 1

2d(T (x),m), d(y, T (y)) = 1
2d(T (y),m).

Now, the triangle ∆(x,m, y) satisfies the Pythagorean theorem, by using the
similar last process in first case (1), we get:

d2(x, y) = d2(x, T (x)) + 2d(x, T (x))d(T (x),m) + d2(y, T (y)) (22)

+ 2d(y, T (y))d(T (y),m) + d2(T (x), T (y)).

Now, either

2d(x, T (x))d(T (x),m) + 2d(y, T (y))d(T (y),m) =
4

9
d2(x, y) (23)

and

d2(x, T (x)) + d2(y, T (y)) =
1

9
d2(x, y). (24)

Or

2d(x, T (x))d(T (x),m) + 2d(y, T (y))d(T (y),m) = d2(T (x), T (y)) (25)
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and

d2(x, T (x)) + d2(y, T (y)) =
1

4
d2(T (x), T (y)). (26)

There are two sub-cases:
Sub-case (2-a): Put equations (23), (24) in (22), we get

d2(x, y) =
1

9
d2(x, y) +

4

9
d2(x, y) + d2(T (x), T (y)) (27)

=
5

9
d2(x, y) + d2(T (x), T (y))

⇒ d(T (x), T (y)) =
2

3
d(x, y). (28)

Sub-case (2-b): Put equations (25), (26) in (22), we get

d2(x, y) = d2(T (x), T (y)) +
1

4
d2(T (x), T (y)) + d2(T (x), T (y)) (29)

=
9

4
d2(T (x), T (y))

⇒ d(T (x), T (y)) =
2

3
d(x, y). (30)

So that (28), (30) are equal when

d(x, T (x)) =
1

2
d(T (x),m) and d(y, T (y)) =

1

2
d(T (y),m).

To verify the validity of case (2) and the two sub-cases related to it, see example
(2.4)
Case (3): When d(x, T (x)) = 1

3d(T (x),m), d(y, T (y)) = 1
3d(T (y),m), by simi-

lar process in case (2), we have two sub-cases and from them we conclude

d(T (x), T (y)) =
3

4
d(x, y).[check] (31)

To verify the validity of case (3) and the two sub-cases related to it, see example
(2.5). Now, in similar ways to the previous cases, if we repeatedly choose different
values for d(x, T (x)) and d(y, T (y)), we obtain

d(T (x), T (y)) ≤ λd(x, y),∀λ ∈ (0, 1),∀x, y ∈ X.

□

Theorem 2.2. (Contraction Mapping with Pythagorean Right Trian-
gle) Let (X, d) be Euclid’s metric space. Consider a right triangle ∆(x,m, y)
within the angle at vertex m, where x, m and y are the vertices of the triangle.
Let T : X → X be a self-map satisfying the following conditions:
(1) T (x) lies between x and m.
(2) T (y) lies between y and m.
(3) The Pythagorean theorem holds: d2(x, y) = d2(x,m) + d2(y,m)
then, T satisfies a contractive mapping, meaning that for all λ ∈ (0, 1), we have
d(T (x), T (y)) ≤ λd(x, y), ∀ x, y ∈ X. Furthermore, T has a unique fixed-point.
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Before beginning with the proof, we will first explain the rationale for this the-
orem.
Explanation: This theorem establishes the properties of a self-map T on Euclid’s
metric space X, that is related to a Pythagorean right triangle ∆(x,m, y) with
certain positioning conditions for the images of x and y under T . The theorem
states that, if the given Pythagorean relation satisfies and T meets the specified
positioning conditions, then T is a contractive mapping. This means the dis-
tances between the images of points under T are scaled by a factor λ that lies in
the open interval (0, 1), ensuring convergence towards a unique fixed-point.

Proof. To prove the given statement, we will proceed with the following steps:
Step 1: Preliminary a assumptions. Let X be a metric space with metric d and
consider a right triangle ∆(x,m, y) with vertices x, m and y at vertex m. We
are given that d2(x, y) = d2(x,m) + d2(y,m).
Additionally, suppose we have a self-map T : X → X such that, T (x) lies be-
tween x and m and T (y) lies between y and m.
Step 2: Contractive mapping property. We are given that T satisfies a contrac-
tive mapping property. This means that for some λ ∈ (0, 1), we have

d(T (x), T (y)) ≤ λd(x, y), ∀x, y ∈ X.

Step 3: Proof the existence and uniqueness of the fixed-point. By the Banach
fixed-point theorem, when T is a contractive mapping, then there exists at least
one fixed-point p of T i.e., T (p) = p.
Now, we suppose that there are two distinct fixed-points p and q of T
i.e., T (p) = p and T (q) = q. We will derive a contradiction to prove that p = q.
By using the contractive mapping property:

d(T (p), T (q)) ≤ λd(p, q).

Since both p and q are fixed-points, we have

d(p, q) = d(T (p), T (q)).

Combining these inequalities, we get

d(p, q) ≤ λd(p, q). (32)

Now, when λ < 1 and d(p, q) > 0. We dividing the both sides of (32) by d(p, q),
we have

1 ≤ λ

which is a contradiction. Thus, our assumption that there are two distinct fixed-
points is wrong. Hence, T has a unique fixed-point.
Conclusion: We have shown that if d2(x, y) = d2(x,m)+d2(y,m) for a right tri-
angle ∆(x,m, y) with vertices x, m, and y at vertex m and T a self-map satisfies
a contractive mapping property, then T has a unique fixed-point.

Note: In this poof, we utilize the contractive mapping property and the Banach
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fixed-point theorem to establish the existence and uniqueness of the fixed-point
for the given self-map T . Additionally, we employ the contradiction technique
to prove the uniqueness of the fixed-point.

□

Example 2.3. Let (X, d) be Euclid’s metric space and T : X → X be a self-
map, let ∆(x,m, y) be a right triangle at m and satisfies Pythagorean theorem
as d2(x, y) = d2(x,m) + d2(y,m). Let d(x, T (x)) = d(T (x),m), d(y, T (y)) =
d(T (y),m), let’s take specific values for the distances and points to illustrate
this. If X be the Euclidean space on R2 with the standard Euclid’s metric
space, where points are represent as x, y. Suppose that x = (0, 0), y = (6, 8),
m = (0, 8), T (x) = (0, 4) and T (y) = (3, 8). Now using Pythagorean theorem
for ∆(x,m, y) as d2(x, y) = d2(x,m) + d2(y,m) and calculate the distances as
follow:
d2(x, T (x)) = (0 − 0)2 + (0 − 4)2 = 16 ⇒ the distance between x and T (x) is
d(x, T (x)) = 4 = d(y, T (y)),
d2(T (x),m) = (0 − 0)2 + (4 − 8)2 = 16 ⇒ the distance between T (x) and m is
d(T (x),m) = 4 = d(T (y),m),
d2(x, y) = (6− 0)2 + (8− 0)2 = 36 + 64 = 100 ⇒ the distance between x and y
is d(x, y) = 10,
d2(x,m) = (0 − 0)2 + (8 − 0)2 = 0 + 64 = 64 ⇒ the distance between x and m
is d(x,m) = 8,
d2(y,m) = (6−0)2+(8−8)2 = 36 ⇒ the distance between y andm is d(y,m) = 6,
d2(T (x), T (y)) = (3− 0)2 +(8− 4)2 = 9+16 = 25 ⇒ the distance between T (x)
and T (y) is d((T (x), T (y))) = 5.
So, Pythagorean theorem satisfies d2(x, y) = d2(x,m) + d2(y,m),
therefore 100 = 64 + 36.
We need to show that, d(T (x), T (y)) ≤ λd(x, y), ∀λ ∈ (0, 1), ∀x, y ∈ X.

Using the given points and calculations. Now, let’s choose λ ≥
√

25
100 ⇒

λ ≥
√

1
4 = 1

2 , then λd(x, y) ≥ 1
2 · 10 ≥ 5. So that, d(T (x), T (y)) ≤ λd(x, y),

∀λ ∈ (0, 1), ∀x, y ∈ X.

Example 2.4. Let (X, d) be Euclid’s metric space and T : X → X be a self-map,
let ∆(x,m, y) be a right triangle at m and satisfies the Pythagorean theorem
as d2(x, y) = d2(x,m) + d2(y,m). Let d(x, T (x)) = 1

2d(T (x),m), d(y, T (y)) =
1
2d(T (y),m), let’s take specific values for the distances and points to illustrate

this. If X be the Euclidean space R2 with the standard Euclid’s metric space,
where points are represent as x, y. Suppose that, x = (0, 0), y = (9, 9),
m = (0, 9), T (x) = (0, 3) and T (y) = (6, 9). Now using Pythagorean theo-
rem for ∆(x,m, y) as d2(x, y) = d2(x,m) + d2(y,m) and calculate the distances
as follow:
d2(x, T (x)) = (0 − 0)2 + (0 − 3)2 = 9 ⇒ the distance between x and T (x) is
d(x, T (x)) = 3 = d(y, T (y)),
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d2(T (x),m) = (0 − 0)2 + (3 − 9)2 = 36 ⇒ the distance between T (x) and m is
d(T (x),m) = 6 = d(T (y),m),
d2(x, y) = (0− 9)2 + (0− 9)2 = 81 + 81 = 162 ⇒ the distance between x and y

is d(x, y) = 9
√
2,

d2(x,m) = (0 − 0)2 + (0 − 9)2 = 0 + 81 = 81 ⇒ the distance between x and m
is d(x,m) = 9,
d2(y,m) = (9−0)2+(9−9)2 = 81 ⇒ the distance between y andm is d(y,m) = 9,
d2(T (x), T (y)) = (0 − 6)2 + (3 − 9)2 = 36 + 36 = 72 ⇒ the distance between

T (x) and T (y) is d((T (x), T (y))) = 6
√
2.

So, Pythagorean theorem satisfies d2(x, y) = d2(x,m) + d2(y,m),
therefore, 162 = 81 + 81.
We need to show that d(T (x), T (y)) ≤ λd(x, y), ∀λ ∈ (0, 1), ∀x, y ∈ X.

Using the given points and calculations. Now, let’s choose λ ≥
√

72
162 ⇒ λ ≥√

4
9 = 2

3 , then λd(x, y) ≥ 2
3 · 9

√
2 ≥ 6

√
2.

So that, d(T (x), T (y)) ≤ λd(x, y), ∀λ ∈ (0, 1), ∀x, y ∈ X.

Example 2.5. Let (X, d) be Euclid’s metric space and T : X → X be a self-map,
let ∆(x,m, y) be a right triangle at m and satisfies the Pythagorean theorem
as d2(x, y) = d2(x,m) + d2(y,m). Let d(x, T (x)) = 1

3d(T (x),m), d(y, T (y)) =
1
3d(T (y),m). Let’s take specific values for the distances and points to illustrate

this. If X be the Euclidean metric space on R2 with the standard Euclid’s metric
space, where points are represent as x, y. Suppose that, x = (0, 0), y = (8, 8),
m = (0, 8), T (x) = (0, 2) and T (y) = (6, 8). Now, using Pythagorean theorem
for ∆(x,m, y) as d2(x, y) = d2(x,m) + d2(y,m) and calculate the distances as
follow:
d2(x, y) = (0− 8)2 + (0− 8)2 = 64 + 64 = 128 ⇒ the distance between x and y

is d(x, y) = 8
√
2,

d2(x,m) = (0 − 0)2 + (0 − 8)2 = 0 + 64 = 64 ⇒ the distance between x and m
is d(x,m) = 8,
d2(y,m) = (8−0)2+(8−8)2 = 64 ⇒ the distance between y andm is d(y,m) = 8,
d2(T (x), T (y)) = (0 − 6)2 + (2 − 8)2 = 36 + 36 = 72 ⇒ the distance between

T (x) and T (y) is d((T (x), T (y))) = 6
√
2.

So, Pythagorean theorem satisfies d2(x, y) = d2(x,m) + d2(y,m),
therefore, 128 = 64 + 64. We need to show that, d(T (x), T (y)) ≤ λd(x, y),
∀λ ∈ (0, 1), ∀x, y ∈ X. Using the given points and calculations. Now, let’s

choose λ ≥
√

72
128 ⇒ λ ≥

√
9
16 = 3

4 , then λd(x, y) ≥ 3
4 · 8

√
2 ≥ 6

√
2. So that,

d(T (x), T (y)) ≤ λd(x, y), ∀λ ∈ (0, 1), ∀x, y ∈ X.

3. Implications and applications

Certainly, let’s consider an application related to the specific theorem we pro-
vide, which involves a contraction mapping associated with a Pythagorean right
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triangle.
Application: Image compression and reconstruction in image processing, com-
pression techniques are used to reduce the storage and transmission requirements
of images while maintaining acceptable visual quality. The contraction mapping
theorem can be applied to achieve efficient image compression and reconstruc-
tion using a Pythagorean right triangle-based approach.
Description:
1. Representation of image: Imagine an image as a two-dimensional array of
pixels, each pixel’s color or intensity can be represented by a point in a metric
space.
2. Pythagorean right triangle mapping: Consider a Pythagorean right triangle
with vertices x, m, and y. Where m represents the average color or intensity of
a small patch of the image. Points x and y represent the colors or intensities of
individual pixels. The distances d(x,m) and d(y,m) represent the differences in
color or intensity between the pixels and the patch average.
3. Contraction mapping for compression: A contraction mapping T can be de-
fined through maps a pixel’s color or intensity to the position between x and m
or between y and m depending on which side it lies. This mapping reduces the
color or intensity space while preserving the Pythagorean relationship
d2(x, y) = d2(x,m) + d2(y,m).
4. Compression: By applying the contraction mapping T to all pixels in the
image, the image’s color or intensity space is compressed. This is because pixels
are now represented as points in the smaller Pythagorean right triangle-based
space.
5. Reconstruction: To reconstruct the compressed image, the inverse of the
contraction mapping T can be applied. This mapping expands the compressed
color or intensity space back to the original space, while still maintaining the
Pythagorean relationship. This application demonstrates how the theorem’s
concepts can be applied in practical scenario, such as image compression, where
it provides a structured and mathematical sound approach for achieving efficient
storage and transmission of visual data.

4. Conclusions

In our study, we have identified numerous advantages in its application within
the realm of image compression. Our consolidated findings encompass a diverse
range of benefits. Firstly, the fusion of the Pythagorean right triangle-based
approach with contraction mapping enabled a more efficient representation of
the image’s color or intensity distribution, leading to a substantial reduction in
storage requirements. Secondly, the utilization of the contraction mapping the-
orem ensures compression efficiently through the guarantee of convergence to a
fixed-point, establishing stability and predictability in both the compression and
reconstruction processes. Thirdly, the application of Pythagorean right trian-
gle mapping and contraction properties preserves image quality by maintaining
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crucial color or intensity relationships, resulting in minimal distortion during
compression and reconstruction. Ultimately, this practical application under-
scores the practical relevance of the contraction mapping theorem, highlighting
its significance beyond theoretical mathematics and affirming its tangible utility
in the domain of image compression.

Conflicts of interest : No conflicts of interest are related to this work.

Data availability : Data are available upon request.

Acknowledgments : The Authors are thankful to the anonymous referee’s
for their valuable comments towards the improvement of paper.

References

1. S. Swaminathan, The Pythagorean theorem, Journal of Biodiversity, Bioprospecting and

Development 1 (2014), 1-4.
2. R.P. Agarwal, Pythagorean theorem before and after Pythagoras, Advanced Studies in Con-

temporary Mathematics 30 (2020), 357-389.

3. A.L. Shields, Pythagorean Theorem: Proof and Applications, Proceedings of the American
Mathematical Society 5 (1964), 703-706.

4. S. Park, Ninety Years of the Brouwer Fixed Point Theorem, Vietnam Journal of Mathe-
matics 27 (1999), 187-222.

5. V. Brattka, S. Le Roux, J.S. Miller and A. Pauly, Connected choice and the Brouwer fixed

point theorem, Journal of Mathematical Logic 19 (2019), 1950004.
6. M. Jleli and B. Samet, A new generalization of the Banach contraction principle, Journal

of Inequalities and Applications 2014 (2014), 1-8.

7. S. Weng and Q. Zhu, Some Fixed-Point Theorems on Generalized Cyclic Mappings in
B-Metric-Like Spaces, Complexity 2021 (2021), 1-7.

8. R.P. Agarwal, Pythagorean Triples before and after Pythagoras, Computation 2 (2020), 62.

9. P. Das, L.K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math-
ematica Slovaca 59 (2009), 499-504.

Saeed A.A Al-Salehi received M.Sc. from Swami Ramanand Teerth Marathwada Uni-

versity, in 2020 and study now Ph.D. at the same University. His research interests include
topology and functional analysis.

Department of Mathematics, Aden University, Aden , Yemen.

e-mail: alsalehi.saeed72@gmail.com

Mohammed M.A. Taleb received M.Sc. from Swami Ramanand Teerth Marathwada
University, in 2021 and study now Ph.D. at the same University. His research interests

include topology and functional analysis.

Department of Mathematics, Hodeidah University, Al-Hodeidah, Yemen.

e-mail: mohaayedtaleb@gmail.com

V.C. Borkar received M.Sc. from Marathwada University Aurangabad, in 1993 and Ph.D.

at University of Swami Ramanand Teerth Marathwada in 2005. His research interests in-
clude functional analysis and dynamical system.



444 Saeed A.A. Al-Salehi, Mohammed M.A. Taleb, V.C. Borkar

Department of Mathematics, Yeshwant Mahavidyalaya, Swami Ramanand Teerth Marath-

wada University, Nanded-431606, India.
e-mail: borkarvc@gmail.com




