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VARIOUS PROPERTIES OF HIGH-ORDER

(p, q)-POLY-TANGENT POLYNOMIALS AND THE
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Abstract. In this paper, we construct higher-order (p, q)-poly-tangent

numbers and polynomials and give several properties, including addition
formula and multiplication formula. Finally, we explore the distribution of

roots of higher-order (p, q)-poly-tangent polynomials.
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1. Introduction

In [7], we defined the tangent numbers and polynomials. The tangent poly-
nomials are defined as the following generating function(

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
.

In [8], we constructed the poly-tangent numbers and polynomials. A modified
poly-tangent numbers and polynomials different from the poly-tangent numbers
and polynomials defined in [8] was introduced. In [9], we introduced tangent
numbers and tangent polynomials of higher order. We also obtain interesting
properties of these numbers and polynomials. For a nonnegative integer r, tan-
gent polynomials of higher order are defined as the following generating function(

2

e2t + 1

)r

ext =

∞∑
n=0

T(r)
n (x)

tn

n!
.

Definition 1.1. For any integer k, the modified poly-tangent polynomials are
defined as the following generating function
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(
2Lik(1− e−t)

t(e2t + 1)

)
ext =

∞∑
n=0

T (k)
n (x)

tn

n!
,

where Lik(t) =
∑∞

n=1
tn

nk is polylogarithm function.

T
(k)
n = T

(k)
n (0) are the called poly-tangent numbers when x = 0. If we set k =

1 in Definition 1.1, then the poly-tangent polynomials are reduced to classical

tangent polynomials because of Li1(1− e−t) = t. That is, T
(1)
n (x) = Tn(x).

In [11], we construcred the higher-order poly-tangent numbers and polynomi-
als.

Definition 1.2. For any integer k, a nonnegative integer r, higher-order poly-
tangent polynomials are defined as the following generating function(

2Lik(1− e−t)

t(e2t + 1)

)r

ext =

∞∑
n=0

T (k,r)
n (x)

tn

n!
.

T
(k,r)
n = T

(k,r)
n (0) are called higher-order poly-tangent numbers when x =

0. If we set k = 1 and r = 1 in Definition 1.2, then the higher-order poly-
tangent polynomials are reduced to classical tangent polynomials because of

Li1(1 − e−t) = t. That is, T
(1,1)
n (x) = Tn(x). Especially when k = 1, we get

T
(1,r)
n (x) = T

(r)
n (x).

In [3], [2], [8], the q-number is defined by

[x]q =
1− qx

1− q
, (q ̸= 1).

We note that limq→1[x]q = x. For k ∈ Z, the q-analogue of polylogarithm
function Lik,q is known by

Lik,q(x) =

∞∑
n=1

xn

[n]kq
.

Definition 1.3. For any integer k, a nonnegative integer r, higher-order (p, q)-
poly-tangent polynomials are defined as the following generating function(

2Lik,q(1− e−t)

t(e2t + 1)

)r

ext =

∞∑
n=0

T (k,r)
n,q (x)

tn

n!
.

T
(k,r)
n,q = T

(k,r)
n,q (0) are called higher-order q-poly-tangent numbers when x = 0.

If we set q → 1 in Definition 1.3, then the higher-order q-poly-tangent polyno-
mials are reduced to higher-order poly-tangent polynomials.
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2. Some properties of the higher-order (p, q)-poly-tangent numbers
and polynomials

In this section, we define higher-order (p, q)-poly-tangent polynomials and
study several properties, including addition formula and multiplication formula.

In [3], [2], [8], For 0 < q < p ≤ 1, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

The (p, q)-analogue of polylogarithm function Lik,p,q is known by

Lik,p,q(x) =

∞∑
n=1

xn

[n]kp,q
, (k ∈ Z).

Definition 2.1. For any integer k, a nonnegative integer r, and 0 < q < p ≤ 1,
higher-order (p, q)-poly-tangent polynomials are defined as the following gener-
ating function (

2Lik,p,q(1− e−t)

t(e2t + 1)

)r

ext =

∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!
.

T
(k,r)
n,p,q = T

(k,r)
n,p,q (0) are called higher-order q-poly-tangent numbers when x = 0.

If we set p = 1, q → 1 in Definition 2.1, then the higher-order (p, q)-poly-tangent
polynomials are reduced to higher-order poly-tangent polynomials.

Theorem 2.2. For any integer k and a nonnegative integer r, n, and m, we get

T (k,r)
n,p,q (mx) =

n∑
l=0

(
n

l

)
T

(k,r)
l,p,q mn−lxn−l.

Proof. From Definition 2.1, we have
∞∑

n=0

T (k,r)
n,p,q (mx)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

emxt

=

( ∞∑
n=0

T (k,r)
n,p,q

tn

n!

)( ∞∑
n=0

(mx)n
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,p,q mn−lxn−l

)
tn

n!
.

(1)

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of
tn

n! . □

If m = 1 in Theorem 2.2, then we get the following corollary.

Corollary 2.3. For any integer k and a nonnegative integer r and n, we have

T (k,r)
n,p,q (x) =

n∑
l=0

(
n

l

)
T

(k,r)
l,p,q xn−l.
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Theorem 2.4. For any integer k and a nonnegative integer r and n, we get

(1) T (k,r)
n,p,q (x+ y) =

n∑
l=0

(
n

l

)
T

(k,r)
l,p,q (x)yn−l.

(2) T (k,r+s)
n,p,q (x+ y) =

n∑
l=0

(
n

l

)
T

(k,r)
l,p,q (x)T

(k,s)
n−l,p,q(y).

Proof. (1) Proof is omitted since it is a similar method of Theorem 2.2.
(2) From Definition 1.1, we have

∞∑
n=0

T (k,r+s)
n,p,q (x+ y)

tn

n!

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r+s

e(x+y)t

=

( ∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!

)( ∞∑
n=0

T (k,s)
n,p,q (y)

tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,p,q (x)T

(k,s)
n−l,p,q(y)

)
tn

n!
.

(2)

Therefore, we end the proof by comparing the coefficients of tn

n! on both sides of
the above equation (2). □

Theorem 2.5. For any integer k and a nonnegative integer r, n, and m, we
obtain

T (k,r)
n,p,q (mx) =

n∑
l=0

(
n

l

)
T

(k,r)
l,p,q (x) (m− 1)n−lxn−l.

Proof. By utlizing Definition 2.1, we have

∞∑
n=0

T (k,r)
n,p,q (mx)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

exte(m−1)xt

=

( ∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!

)( ∞∑
n=0

(m− 1)nxn t
n

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,p,q (x) (m− 1)n−lxn−l

)
tn

n!
.

(3)

Therefore, we end the proof by comparing the coefficients of tn

n! on both sides of
the above equation (3). □
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Theorem 2.6. For any integer k, a nonnegative integer r, and a positive integer
n, we have

T (k,r)
n,p,q (x+ 1)− T (k,r)

n,p,q (x) =

n−1∑
l=0

(
n

l

)
T

(k,r)
l,p,q (x).

Proof. By using Definition 2.1, we have

∞∑
n=0

T (k,r)
n,p,q (x+ 1)

tn

n!
−

∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

e(x+1)t −
(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

ext

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

ext
(
et − 1

)
=

( ∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!

)( ∞∑
n=0

tn

n!
− 1

)

=

( ∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!

)( ∞∑
n=1

tn

n!

)

=

∞∑
n=0

n∑
l=0

(
n+ 1

l

)
T

(k,r)
l,p,q (x)

tn+1

(n+ 1)!

=

∞∑
n=1

(
n−1∑
l=0

(
n

l

)
T

(k,r)
l,p,q (x)

)
tn

n!
.

(4)

Then we compare the coefficients of tn

n! for n ≥ 1. The reason both sides of

the above equation (4) can be compared the coefficients is that T
(k,r)
0,q (x+ 1)−

T
(k,r)
0,q (x) = 0. Thus, the proof is done. □

3. Polynomials and numbers related to higher-order
(p, q)-poly-tangent polynomials and its symmtric property

In this section, we examine the association between higher-order poly-tangent
polynomials and poly-tangent polynomials using Cauchy product. We also ex-
plore relation of higher-order poly-tangent polynomials and Stirling numbers of
the second kind. Furthermore, we study the symmetry properties of higher-order
poly-tangent polynomials.

Generating function of the Stirling numbers of the second kind S2(n, k) is
defined as follows:

∞∑
n=k

S2(n, k)
tn

n!
=

(et − 1)k

k!
.



462 Jung Yoog Kang

Theorem 3.1. For any integer k, a nonnegative integer r and a positive integer
n, we obtain

T (k,r)
n,p,q (x) =

n∑
l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)T

(k,r)
n−l,p,q,

where (x)m = x(x− 1) · · · (x−m+ 1) is falling factorial.

Proof. From Definition 2.1, we have

∞∑
n=0

T (k,r)
n,p,q (x)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r

ext

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)r ∞∑
m=0

(x)m
(et − 1)m

m!

=

( ∞∑
n=0

T (k,r)
n,p,q

tn

n!

)( ∞∑
n=0

∞∑
m=0

(x)m S2(n,m)
tn

n!

)

=

( ∞∑
n=0

T (k,r)
n,p,q

tn

n!

)( ∞∑
n=0

n∑
m=0

(x)m S2(n,m)
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)T

(k,r)
n−l,p,q

)
tn

n!
.

(5)

Thus, we finish the proof by comparing the coefficients of tn

n! . □

We recall a multinomial coefficient, which is(
n

m1,m2, · · · ,ml

)
=

n!

m1!m2! · · ·ml!
. (6)

Let us consider the following equation using the equation (6) above. This
equation is an equation expressed by applying Cauchy product continuously.

Theorem 3.2. For any integer k, a nonnegative integer n, and r ≥ 3, we get

T (k,r)
n,p,q (rx) =

n∑
mr−1=0

mr−1∑
mr−2=0

· · ·
m3∑

m2=0

m2∑
m1=0

×
(

n

m1,m2 −m1, · · · ,mr−1 −mr−2, n−mr−1

)
T (k)
m1,p,q(x)

×T
(k)
m2−m1,p,q(x) · · · T

(k)
mr−1−mr−2,p,q(x)T

(k)
n−mr−1,p,q(x),

where
(

n
m1,m2,··· ,ml

)
is multinomial coefficient.
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Theorem 3.3. Let r and n be a nonnegative integer and w1, w2 > 0 (w1 ̸= w2).
Then we have

n∑
l=0

(
n

l

)
wl

1w
n−l
2 T

(k,r)
l,p,q (w2x)T

(k,r)
n−l,p,q(w1x)

=

n∑
l=0

(
n

l

)
wl

2w
n−l
1 T

(k,r)
l,p,q (w1x)T

(k,r)
n−l,p,q(w2x).

Proof. Let us consider the function

F (t) =

(
4Lik,p,q(1− e−w1t)Lik,p,q(1− e−w2t)

t2(e2w1t + 1)(e2w2t + 1)

)r

e2w1w2xt. (7)

Then we obtain

F (t) =

(
2Lik,p,q(1− e−w1t)

t(e2w1t + 1)

)r

ew1w2xt

(
2Lik,p,q(1− e−w2t)

t(e2w2t + 1)

)r

ew1w2xt

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,p,q (w2x)
tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,p,q (w1x)
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
wl+r

1 wn−l+r
2 T

(k,r)
l,p,q (w2x)T

(k,r)
n−l,p,q(w1x)

)
tn

n!
.

(8)

By calculating in the same way as the above equation (8), we can get

F (t) =

∞∑
n=0

(
n∑

l=0

(
n

l

)
wl+r

2 wn−l+r
1 T

(k,r)
l,p,q (w1x)T

(k,r)
n−l,p,q(w2x)

)
tn

n!
. (9)

The proof is complete as a result of the equations (8) and (9). □

Let w is an odd number. Then we can easily see
∞∑

n=0

Ãn(w)
tn

n!
=

ewt + 1

et + 1
, (10)

where Ãn(w) =
∑w−1

l=0 (−1)l ln is called alternating power sum.

Theorem 3.4. Let w1 and w2 be an odd number and n be a nonnegative integer.
Then we have

n∑
j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

1 w2n−2j−i−l+r
2 T

(k,r)
i,p,q

× T
(k,r)
n−j−i,p,qTl(w2x)Ãn−j−l(w1)

=

n∑
j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

2 w2n−2j−i−l+r
1 T

(k,r)
i,p,q

× T
(k,r)
n−j−i,p,qTl(w1x)Ãn−j−l(w2).
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Proof. First, let us assume that

G(t) = 2
4r(Lik,p,q(1− e−w1t))r(Lik,p,q(1− e−w2t))r(e2w1w2t + 1)

t2r (e2w1t + 1)
r
(e2w2t + 1)

r
(e2w1t + 1)(e2w2t + 1)

e2w1w2xt.

(11)

Then we calculate

G(t) = 2

(
2Lik,p,q(1− e−w1t)

t(e2w1t + 1)

)r (
2Lik,p,q(1− e−w2t)

t(e2w2t + 1)

)r

× 2

(e2w1t + 1)
e2w1w2xt

e2w1w2t + 1

e2w2t + 1

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,p,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k.r)

n,p,q

tn

n!

)

×

( ∞∑
n=0

wn
1Tn,p,q(w2x)

tn

n!

)( ∞∑
n=0

2nwn
2 Ãn(w1)

tn

n!

)

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,p,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,p,q

tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
2n−lwl

1w
n−l
2 Tl(w2x)Ãn−l(w1)

tn

n!

=

∞∑
n=0

 n∑
j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

1 w2n−2j−i−l+r
2

× T
(k,r)
i,p,q T

(k,r)
n−j−i,p,qTl(w2x)Ãn−j−l(w1)

) tn

n!
.

(12)

In a similar way to the above equation (12), we get

G(t) =

( ∞∑
n=0

wn+r
1 T (k,r)

n,p,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,p,q

tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
2n−lwl

2w
n−l
1 Tl(w1x)Ãn−l(w2)

tn

n!
.

(13)

Hence, by using Cauchy product, the proof is complete by comparing the coef-
ficients of tn

n! on both sides of the equations (12) and (13). □

4. Distribution of zeros of the higher-order (p, q)-poly-tangent
polynomials

Using generating functions, the generalized forms of known polynomials such
as the Bernoulli, Euler, falling factorial and tangent polynomials are studied.
In particular, various properties of these polynomials were investigated through
numerical experiments, see for example [1] , [4], [6], [7], [8], [9], [10], [12], [13].



High-order (p, q)-tangent numbers and polynomials 465

In this section, we discover new interesting pattern of the zeros of the higher-

order (p, q)-poly-tangent polynomials T
(k,3)
n,p,q (x). We propose some conjectures

by numerical experiments. The higher-order (p, q)-poly-tangent polynomials

T
(k,3)
n,p,q (x) can be determined explicitly.
A few of them are

T
(k,3)
0,p,q (x) = 1,

T
(k,3)
1,p,q (x) = −9

2
+ 3

(
p2 − q2

p− q

)−k

+ x,

T
(k,3)
2,p,q (x) =

35

2
+ 6

(
p2 − q2

p− q

)−2k

− 30

(
p2 − q2

p− q

)−k

+ 6

(
p3 − q3

p− q

)−k

− 9x

+ 6

(
p2 − q2

p− q

)−k

x+ x2,

T
(k,3)
3,p,q (x) = −54 + 6

(
p2 − q2

p− q

)−3k

− 99

(
p2 − q2

p− q

)−2k

+ 201

(
p2 − q2

p− q

)−k

− 99

(
p3 − q3

p− q

)−k

+ 36

(
p2 − q2

p− q

)−k (
p3 − q3

p− q

)−k

+ 18

(
p4 − q4

p− q

)−k

+
105x

2
+ 18

(
p2 − q2

p− q

)−2k

x− 90

(
p2 − q2

p− q

)−k

x

+ 18

(
p3 − q3

p− q

)−k

x− 27x2

2
+ 9

(
p2 − q2

p− q

)−k

x2 + x3,

We investigate the beautiful zeros of the higher-order (p, q)-poly-tangent poly-

nomials T
(k,r)
n,p,q (x) by using a computer. We plot the zeros of higher-order (p, q)-

poly-tangent polynomials T
(k,r)
n,p,q (x) for n = 30, r = 3 and x ∈ C(Figure 1).

In Figure 1(top-left), we choose n = 30, p = 9
10 , q = 1

10 and k = −4. In Figure

1(top-right), we choose n = 30, p = 7
10 , q = 3

10 and k = −4. In Figure 1(bottom-

left), we choose n = 30, p = 9
10 , q = 1

10 , and k = 4. In Figure 1(bottom-right),

we choose n = 30, p = 7
10 , q = 3

10 and k = 4.
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Figure 1. Zeros of T
(k,r)
n,p,q (x)

Stacks of zeros of T
(k,r)
n,p,q (x) for 1 ≤ n ≤ 30, r = 3 from a 3-D structure are

presented(Figure 2).

Figure 2. Stacks of zeros of T
(k,r)
n,p,q (x) for 1 ≤ n ≤ 30

In Figure 2(top-left), we choose p = 9
10 , q = 1

10 and k = −4. In Figure

2(top-right), we choose p = 7
10 , q = 3

10 and k = −4. In Figure 2(bottom-left),

we choose p = 9
10 , q = 1

10 , and k = 4. In Figure 2(bottom-right), we choose

p = 7
10 , q = 3

10 and k = 4.
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We plot the real zeros of the higher-order (p, q)-poly-tangent polynomials

T
(k,r)
n,p,q (x), r = 3, and x ∈ C (Figure 3).

Figure 3. Real zeros of T
(k,r)
n,p,q (x) for 1 ≤ n ≤ 30

In Figure 3(top-left), we choose p = 9
10 , q = 1

10 and k = −4. In Figure

3(top-right), we choose p = 7
10 , q = 3

10 and k = −4. In Figure 3(bottom-left),

we choose p = 9
10 , q = 1

10 , and k = 4. In Figure 3(bottom-right), we choose

p = 7
10 , q = 3

10 and k = 4.
Next, we calculated an approximate solution satisfying higher-order (p, q)-

poly-tangent polynomials T
(k,r)
n,p,q (x) for x ∈ R. The results are given in Table 1

and Table 2.

Table 1. Approximate solutions of T (k,r)
n,p,q(x) = 0, k = −4, r = 3, p = 9

10 , q = 1
10

degree n x

1 1.5000

2 −0.65302, 3.6530

3 −2.2803, 1.6044, 5.1758

4 −3.6357, −0.019855, 3.2797, 6.3758

5 −4.8193, −1.3903, 1.6763v4.6764, 7.3568

6 −5.8848, −2.5765, 0.26970, 3.1315, 5.8958, 8.1643

7 −6.8665, −3.6147, −0.98636, 1.7233, 4.4364, 6.9935, 8.8144

8 −7.7883, −4.5265, −2.1167, 0.42719, 3.0557, 5.6342, 8.0235, 9.2909
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Table 2. Approximate solutions of T (k,r)
n,p,q(x) = 0, k = −4, r = 3, p = 7

10 , q = 3
10

degree n x

1 1.5000

2 −1.0324, 4.0324

3 −3.0349, 1.8143, 5.7206

4 −4.7782, 0.027879, 3.7411, 7.0092

5 −6.3663, −1.5099, 2.0638, 5.2726, 8.0399

6 −7.8524, −2.8817, 0.59904, 3.6833, 6.5814, 8.8704

7 −9.2671, −4.1360, −0.70177, 2.2477, 5.0864, 7.7543, 9.5165

8 −10.630, −5.3059, −1.8680, 0.94474, 3.6839, 6.3544, 8.8869, 9.9336
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