DOI QR코드

DOI QR Code

Study on Economic Analysis of Offshore and Ground-mounted Solar Photovoltaics

해상과 지상 태양광 발전 경제성 비교에 관한 연구

  • Kyu-Won Hwang (Ocean Law and Policy Institute, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Moon Suk Lee (Ocean Law and Policy Institute, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Chul-Yong Lee (School of Business, Pusan National University)
  • Received : 2024.02.08
  • Accepted : 2024.03.15
  • Published : 2024.03.25

Abstract

The rapid expansion of industrialization and population growth worldwide has led to a significant surge in energy demand, perpetuating heavy reliance on finite fossil fuel reserves. Although prevailing policies primarily target ground-mounted solar photovoltaics, there is a noticeable increase in the adoption of floating solar power generation systems on water surfaces. Nonetheless, adequate studies and legislative reviews on offshore solar photovoltaics in Korea are lacking. The absence of well-defined criteria for the economic analysis of floating solar photovoltaics presents hurdles to their economic feasibility. This study conducted a comprehensive cost-benefit analysis of offshore photovoltaics to evaluate their economic viability and compared four types of solar photovoltaics based on the operating area and technology: ground-mounted, floating on inland water, pontoon-based offshore, and flexible system offshore. Perspectives from both central and local government entities, emphasizing social aspects, as well as inputs from private companies with a financial focus were considered. The findings revealed variations in economic viability depending on the operating area and technology employed. This study aims to contribute to the advancement of market maturity and technology within the realm of offshore solar photovoltaics.

Keywords

Acknowledgement

본 연구는 환경부 「기후변화특성화대학원사업」의 지원으로 수행되었습니다. 또한 해양과학기술원 해양법·정책연구소에서 수행하고 있는 「탄소중립/기후위기 대응을 위한 국제규범 및 국내 이행을 위한 정책연구(PEA0241)」의 지원을 받아 수행되었습니다.

References

  1. World Meteorological Organization, 2022, "State of the global climate 2021", WMO-No.1290, https://library.wmo.int/records/item/56300-state-of-the-global-climate-2021.
  2. Government of the Republic of Korea, 2020, "2019 Abnormal climate report", http://www.climate.go.kr/home/bbs/view.php?code=93&bname=abnormal&vcode=6385.
  3. Korea Meteorological Administration, 2021, "The 2020 climate crisis seen as social and economic damage", Accessed 2 January 2024, https://www.kma.go.kr/kma/news/press.jsp?bid=press&mode=view&num=1193975&page=1&&field1=subject&text1=%EA%B2%BD%EC%A0%9C.
  4. Ministry of Trade, Industry and Energy, 2020, "The 5th basic plan for renewable energy technology development, use and distribution", https://www.motie.go.kr/attach/down/aa4abe331409819421ff269b271f06a6/ea213ac14b144bb00e0c51f2562a63f9.
  5. Goswami, A., Sadhu, P., Goswami, U., and Sadhu, P.K., 2019, "Floating solar power plant for sustainable development: A techno-economic analysis", Environmental Progress & Sustainable Energy, 38(6), e13268.
  6. Trapani, K., Millar, D.L., and Smith, H.C.M., 2013, "Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies", Renewable energy, 50, 879-888. https://doi.org/10.1016/j.renene.2012.08.043
  7. Trapani, K., and Millar, D.L., 2013, "Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands", Energy Conversion and Management, 67, 18-26. https://doi.org/10.1016/j.enconman.2012.10.022
  8. Grand View Research, 2022, "Floating solar panels market size, share & trends analysis report by product (tracking, stationary), by region (Asia Pacific, North America, Europe, Middle East & Africa) and segment forecasts, 2022-2030", https://www.grandviewresearch.com/industry-analysis/floating-solar-panels-market.
  9. World Bank Group, Energy Sector Management Assistance Program (ESMAP), and Solar Energy Research Institute of Singapore (SERIS), 2019, "Where sun meets water: Floating solar handbook for practitioners", Washington DC, https://openknowledge.worldbank.org/entities/publication/645af5c2-9fbc-5575-8fd5-6dbed04e09b4.
  10. Hooper, T., Armstrong, A., and Vlaswinkel, B., 2021, "Environmental impacts and benefits of marine floating solar", Solar Energy, 219, 11-14. https://doi.org/10.1016/j.solener.2020.10.010
  11. Enlit World News, "Floating solar powers seaweed farming", 2021.1.12., https://www.enlit.world/renewableenergy/solar-energy/floating-solar-powers-seaweed-farming/.
  12. Ministry of Environment, 2021, "Floating solar power, making it safe together with residents", Accessed 2 January 2024, https://www.me.go.kr/home/web/board/read.do?menuId=10525&boardMasterId=1&boardCategoryId=39&boardId=1438680.
  13. Korea Development Institute (KDI), 2018, "Research on revising and supplementing general guidelines for conducting preliminary feasibility studies for public enterprise and quasi-governmental organizations projects" https://www.kdi.re.kr/research/reportView?&pub_no=15989.
  14. Lee, J.H., Kim, M.W., and Won, C.S., 2017, "Floating rotary solar power system development status", The Korean Institute of Electrical Engineers, 66(3), 13-25.
  15. Korea Environment Institute (KEI), 2020, "Direction for the mid- and long-term development for expanding renewable energy and responding to future environmental changes : current status and direction of onshore wind power", https://www.kei.re.kr/elibList.es?mid=a10101010000&elibName=researchreport&class_id=&act=view&c_id=728353.
  16. Saemangeum Development and Investment Agency, "Saemangeum development plan: Vision and development strategy", Accessed 2 January 2024, https://www.saemangeum.go.kr/sda/content.do?key=2009074427682.
  17. Veritas, D.N., 2021, "Design, development and operation of floating solar photovoltaic systems", Technical Report, Accessed 2 January 2024, https://www.dnv.com/energy/standards-guidelines/dnv-rp-0584-design-development-and-operation-of-floating-solar-photovoltaic-systems.html.
  18. Jeong, S.E., Jeong, J.W., Kim, H.S., and Bae, Y.H., 2019, "Problems and future direction of domestic floating solar power generation facilities", Water for future, 52(3), 17-22.
  19. Korea Energy Economics Institute (KEEI), 2020, "Establishment and operation of long-term LCOE forecast system for expansion of renewable energy(1/5)", https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fd_results.nsf%2Fmain_all%2FA10FCB3438C55F4349258669004FC436&s=%3FOpenDocument%26menucode%3DS0%26category%3D%25EA%25B8%25B0%25EB%25B3%25B8%25EC%2597%25B0%25EA%25B5%25AC.
  20. Kwak, Y.K., Lee, B.H., and Kang, F.S., 2022, "Economic efficiency analysis based on benefit-cost ratio of floating photovoltaic power generation system", Trans. Korean Inst. Elect. Eng., 71(8), 1117-1125.
  21. Nguyen, N.H., Le, B.C., and Bui, T.T., 2023, "Benefit analysis of grid-connected floating photovoltaic system on the hydropower reservoir", Appl. Sci., 13(5), 2948.
  22. Kichou, S., Skandalos, N., and Wolf, P., 2022, "Floating photovoltaics performance simulation approach", Heliyon, 8(12), e11896.
  23. Korea Institute Of Construction Technology, 2018, "Preliminary study on development of buoyant body and mooring system for marine solar power plant", https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201900017770#;.
  24. Choi, S.B., Kim, M, and Kim, K.S., 2020, "Trend of packaging technology for floating photovoltaics", J. Microelectron. Packag. Soc, 27(3), 21-27.
  25. Keiner, D., Salcedo-Puerto, O., Immonen, E., van Sark, W.G.J.H.M., Nizam, Y., Shadiya, F., Duval, J., Delahaye, T., Gulagi, A., and Breyer, C., 2022, "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives", Appl. Energy, 308, 118360.
  26. Sahu, A., Yadav, N., and Sudhakar, K., 2016, "Floating photovoltaic power plant: A review", Renew. Sustain. Energy Rev., 66, 815-824. https://doi.org/10.1016/j.rser.2016.08.051
  27. Solanki, C., Nagababu, G., and Kachhwaha, S.S., 2017, "Assessment of offshore solar energy along the coast of India", Energy Procedia, 138, 530-535. https://doi.org/10.1016/j.egypro.2017.10.240
  28. Wang, J., and Lund, P.D., 2022, "Review of recent offshore photovoltaics development", Energies, 15(20), 7462.
  29. Lopez, M., Rodriguez, N., and Iglesias, G., 2020, "Combined floating offshore wind and solar PV", J. Mar. Sci. Eng., 8(8), 576.
  30. Soukissian, T.H., Karathanasi, F.E., and Zaragkas, D.K., 2021, "Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data", Energy Conversion and Management, 237, 114092.
  31. Golroodbari, S.Z.M., Vaartjes, D.F., Meit, J.B.L., van Hoeken, A.P., Eberveld, M., Jonker, H., and van Sark, W.G.J.H.M., 2021, "Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park", Solar Energy, 219, 65-74. https://doi.org/10.1016/j.solener.2020.12.062
  32. Bhattacharyya, S.C., 2019, "Energy economics: Concepts, issues, markets and governance", Springer Nature, Berlin.
  33. Korea Institute of Energy Research (KIER), 2007, "Economic analysis of new and renewable energy", https://www.nl.go.kr/NL/onlineFileIdDownload.do?fileId=FILE-00008503101.
  34. Korea Energy Economics Institute (KEEI), 2017, "International comparative analysis of equalized costs through solar power cost analysis", https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fd_results.nsf%2F0%2FA75978CEA62C075549258264002CD050&s=%3Fopendocument%26menucodeS3%26category.
  35. Ramasamy, V., and Margolis, R., 2021, "Floating photovoltaic system cost benchmark: Q1 2021 installations on artificial water bodies (No. NREL/TP-7A40-80695)", National Renewable Energy Lab.(NREL), Golden, CO (United States), DOI: 10.2172/1828287.
  36. Korea Power Exchange, "Analysis of nationwide solar power generation time in 2021 : Power generation time by region and capacity", Accessed 2 January 2024, https://www.enlighten.kr/insight/biz-development/8198.
  37. Korea Power Exchange, "Annually system marginal price", Accessed 2 January 2024, https://new.kpx.or.kr/smpYearly.es?mid=a10606080400&device=pc.
  38. Korea Power Exchange, "Renewable one-stop business information integrated portal REC transaction trend report", Accessed 2 January 2024, https://onerec.kmos.kr/portal/rec/selectRecReport_tradePerformanceList.do?key=1971.
  39. Ministy of Trade, Industry and Energy, 2023, "Management and operation guidelines for mandatory new and renewable energy supply system and mandatory fuel mixing system".
  40. Ministy of Trade, Industry and Energy, 2006, "Renewable energy feed-in tariff support system operation regulations".
  41. Korea Power Exchange, 2023, "Status of power plant construction project-4th quarter of 2022", Accessed 2 January 2024, https://www.kpx.or.kr/board.es?mid=a10403040000&bid=0040&act=view&list_no=68894&tag=&nPage=1.
  42. World Nuclear Association, 2011, "Comparison of lifecycle greenhouse gas emissions of various electricity generation sources", https://world-nuclear.org/ourassociation/publications/online-reports/lifecycle-ghg-emissions-of-electricity-generation.aspx
  43. Greenhouse Gas Inventory and Research Center of Korea, 2023, "Results of emissions trading system operation", Accessed 2 January 2024, https://www.gir.go.kr/home/board/read.do;jsessionid=1HFZwQJqB3saI9ryNcOcXkXoZjkaDB8UgoOtAwJbBrUvrVcCxH8ECLDLFblPdCtZ.og_was2_servlet_engine1?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=20&condition.boardCategoryId=1&boardId=79&boardMasterId=9&boardCategoryId=.
  44. Korea Environment Institute (KEI), 2021, "Climate, air, and energy policy direction according to the 2050 low-carbon development strategy", https://www.kei.re.kr/elibList.es?mid=a10101000000&elibName=researchreport&act=view&c_id=740818.
  45. Lee, C.Y., and Lee M.K., 2019, "Commercial (100 kW) photovoltaic system cost structure : The cases of Korea, Germany, and China", New. Renew. Energy, 15(2), 31-41. https://doi.org/10.7849/ksnre.2019.6.15.2.031