DOI QR코드

DOI QR Code

국내 봉화 송이 자생지 내 균환 유래 토양세균의 송이균사체 생장촉진 효과

Growth promoting effect on Tricholoma matsutake mycelium by bacteria from fairy Ring in Bonghwa-gun, Korea

  • 최두호 (농진청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이은지 (농진청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이강효 (농진청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 안기홍 (농진청 국립원예특작과학원 인삼특작부 버섯과)
  • Doo-Ho Choi (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Eunji Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kang-Hyo Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Gi-Hong An (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 투고 : 2024.01.18
  • 심사 : 2024.03.19
  • 발행 : 2024.03.31

초록

본 연구실에서는 송이의 인공재배 조건 확립을 목표로 세균을 활용한 생장촉진 유도실험을 진행하였으며, 봉화에서 확보한 7 점의 세균에 의한 송이 균사체의 생장촉진 결과를 확인하였다. 생장촉진 효과가 가장 높았던 3 점의 세균 B22_7_B06, B22_7_B07, B22_7_B08은 Paenibacillus 속으로 확인되었다. 그러나 이러한 배양된 송이 균사체의 생장면적 측정 이외에 다양한 방식을 통한 균사체 생장결과 확인 기준이 필요한 실정이며, 이에 향후 확보된 세균들이 모두 그람 양성균인 것에 착안하여 각 세균들로부터 대사산물을 추출한 후 (Eltokhy et al., 2021), 추출한 대사산물을 활용하여 송이 균사체의 세포외 효소활성 변화 정도를 측정하여 보다 체계적인 송이 균사체 생장촉진 데이터를 확보하고자 한다. 더불어 미생물에 의한 송이 균사체 생장촉진 사례 데이터를 지속적으로 축적하여 송이 종류에 따른 미생물의 생장촉진 효과의 다양성을 확보하고 확보된 촉진균으로 부터 추출한 물질이 함유된 영양 배지를 활용하여 송이 인공재배를 위한 생태모방에 기여하고자 한다.

As a member of ectomycorrhizal fungi, Tricholoma matsutake has a symbiotic relationship with its host, Pinus densiflora. To cultivate T. matsutake artificially, the co-cultivation of T. matsutake mycelia and bacteria from shiro was introduced. In this study, bacteria were isolated from soil samples in Bonghwa-gun, and seven bacterial isolates (B22_7_B05, B22_7_B06, B22_7_B07, B22_7_B08, B22_7_B10, B22_7_B13, and B22_7_B14) promoted the growth of T. matsutake mycelia (147.48, 232.11, 266.72, 211.43, 175.17, 154.62, and 177.92%, respectively). Sequencing of the 16S rRNA region of the isolated bacteria was performed. B22_7_B05 and B22_7_B10 were identified as Bacillus toyonensis, B22_7_B06 and B22_7_B08 as Paenibacillus taichungensis, B22_7_B07 and B22_7_B14 as P. gorilla, and B22_7_B13 as P. odorifer. These bacterial isolates were associated with the shiro community and are expected to contribute to the cultivation of T. matsutake.

키워드

과제정보

본 연구는 농촌진흥청 국립원예특작과학원 시험연구사업(과제번호 PJ014766022023)에 의하여 수행된 결과의 일부로써 국립원예특작과학원 전문연구원 과정 지원사업에 의해 이루어진 것이며, 이에 감사드립니다.

참고문헌

  1. Choi DH, Han JG, Lee KH, An GH. 2023. Growth-promoting effect on Tricholoma matsutake mycelium by Terrabacteria isolated from pine mushroom habitats in Korea. J Mushrooms 21(3): 190-193.
  2. Clarridge III, JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17: 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
  3. Eltokhy MA, Saad BT, Eltayeb WN, Yahia IS, Aboshanab KM, Ashour MSE. 2021. Exploring the nature of the antimicrobial metabolites produced by Paenibacillus ehimensis soil isolate MZ921932 using a metagenomic nanopore sequencing coupled with LC-mass analysis. Antibiotics (Basel) 11(1): 12.
  4. Ka KH, Kim HS, Hur TC, Park H, Jeon SM, Ryoo R, Jang Y. 2018. Analysis of environment and production of Tricholoma matsutake in matsutake-infected pine trees. Korean J Mycol 46: 34-42.
  5. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880-882. https://doi.org/10.1126/science.1208473
  6. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  7. Narimatsu M, Koiwa Y, Sakamot Y, Natsume S, Kurokochi H, Lian C, Nakajima Y, Nakade K, Yoshida K, Tawaraya K. 2016. Estimation of novel colony establishment and persistence of the ectomycorrhizal basidiomycete Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecology 24: 35e43.
  8. Oh SY, Kim M, Eimes JA, Lim YW. 2018a. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 13: e0190948.
  9. Oh SY, Lim YW. 2018b. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). J Microbiol 56: 399-407. https://doi.org/10.1007/s12275-018-7491-y
  10. Ohara H, Hamada M. 1967. Disappearance of bacteria from the zone of active mycorrhizas in Tricholoma matsutake (S. Ito et Imai) singer. Nature 213: 528e529.
  11. Visagie C, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA. 2014. Identification and nomenclature of the genus Penicillium. Stud Mycol 78: 343-371. https://doi.org/10.1016/j.simyco.2014.09.001
  12. Yamanaka T, Ota Y, Konno M, Kawai M, Ohta A, Neda H, Terashima Y, Yamada A. 2014. The host ranges of conifer-associated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycol 106: 397-406. https://doi.org/10.3852/13-197
  13. Yamanaka T, Yamada A, Furukawa H. 2020. Advances in the cultivation of the highly prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience 61: 49-57. https://doi.org/10.1016/j.myc.2020.01.001