DOI QR코드

DOI QR Code

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi (Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University)
  • 투고 : 2024.01.12
  • 심사 : 2024.02.19
  • 발행 : 2024.04.01

초록

Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

키워드

과제정보

This work was supported by a Research Grant of Andong National University.

참고문헌

  1. Abeles, F. B., Morgan, P. W. and Saltveit, M. E. Jr. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA. 414 pp.
  2. Bleecker, A. B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16:1-18.
  3. Choi, H.-J. and Montemagno, C. D. 2013. Recent progress in advanced nanobiological materials for energy and environmental applications. Materials 6:5821-5856.
  4. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. and Abrams, S. R. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61:651-679.
  5. Ellis, J. G., Dodds, P. N. and Lawrence, G. J. 2007. The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr. Opin. Microbiol. 10:326-331.
  6. Finkelstein, R. 2013. Abscisic acid synthesis and response. Arabidopsis Book 11:e0166.
  7. Hartmann, M. and Zeier, J. 2018. L-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96:5-21.
  8. Hedden, P. 2020. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 61:1832-1849.
  9. Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.- Q. and Chen, Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153:1526-1538.
  10. Hunter, L. J. R., Westwood, J. H., Heath, G., Macaulay, K., Smith, A. G., Macfarlane, S. A., Palukaitis, P. and Carr, J. P. 2013. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PLoS ONE 8:e66530.
  11. Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:283-307.
  12. Khan, S. A., Hamayun, M., Yoon, H., Kim, H.-Y., Suh, S.-J., Hwang, S.-K., Kim, J.-M., Lee, I.-J., Choo, Y.-S., Yoon, U.-H., Kong, W.-S., Lee, B.-M. and Kim, J.-G. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8:231.
  13. Klessig, D. F., Choi, H. W. and Dempsey, D. A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31:871-888.
  14. Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36:1-10.
  15. Korasick, D. A., Enders, T. A. and Strader, L. C. 2013. Auxin biosynthesis and storage forms. J. Exp. Bot. 64:2541-2555.
  16. Lund, S. T., Stall, R. E. and Klee, H. J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371-382.
  17. Rolland, F., Baena-Gonzalez, E. and Sheen, J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57:675-709.
  18. Sakakibara, H. 2021. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 105:421-430.
  19. Sami, F., Siddiqui, H. and Hayat, S. 2019. Interaction of glucose and phytohormone signaling in plants. Plant Physiol. Biochem. 135:119-126.
  20. Schwartz, S. H., Qin, X. and Zeevaart, J. A. D. 1997. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131:1591-1601.
  21. Wang, B., Chu, J., Yu, T., Xu, Q., Sun, X., Yuan, J., Xiong, G., Wang, G., Wang, Y. and Li, J. 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 112:4821-4826.
  22. Wang, K. L.-C., Li, H. and Ecker, J. R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl 1):S131-S151.
  23. Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565.
  24. Wilkinson, S. and Davies, W. J. 2002. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25:195-210.
  25. Zeevaart, J. A. D. and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439-473.
  26. Zhao, Y. 2014. Auxin biosynthesis. Arabidopsis Book 12:e0173.
  27. Zurcher, E. and Muller, B. 2016. Cytokinin synthesis, signaling, and function: advances and new insights. Int. Rev. Cell Mol. Biol. 324:1-38.