DOI QR코드

DOI QR Code

Study of Heating Temperature and Quantification Conditions of Standard Water for Evaluating Hair Water Content

모발 수분 함량 평가를 위한 가열 온도와 기준 수분 정량 조건 연구

  • Received : 2023.12.12
  • Accepted : 2024.02.29
  • Published : 2024.03.30

Abstract

Recently, there have been attempts to claim the hair moisturizing effect for a hair care product, however there has not yet been an official evaluation method because heating temperature for hair has not been established. This study was conducted to establish a quantitative evaluation for hair water content. In order to observe the behavior of water inside hair, heat was applied to hair with various temperatures using thermogravimetric dry residue. As the heating temperature increased, the amount of moisture released from the hair increased. As a result of evaluating hair using a differential scanning calorimeter (DSC), a unique phenomenon in which a rapid endothermic reaction occurs around 75 ℃ was observed. This phenomenon was also observed in different ethnic hair. In hair that damaged the hair cuticle barrier with oxidation and heat, this rapidly rising endothermic reaction temperature occurred at 77 ℃, which was slightly higher, and 73 ℃ was observed when this hair was applied with polar oil, conditioning polymer, or keratin protein. To determine how this reaction affects the hair surface, friction test was performed using an atomic force microscope. When heated above 75 ℃, cuticle friction increased, however when heated above 90 ℃, there was no change in hair cuticle friction. Finally, it was confirmed that around 75 ℃ is the critical temperature at which desorption of water bound to the hair occurs. It is suggested that a heating temperature of 75 ℃ is the optimal temperature for detecting and quantifying the moisture content of hair, and that approximately 10% detected at 75 ℃ can be a standard value for hair moisture content.

최근에 모발 케어 화장품 효능으로서 모발 보습 효과를 소구하려는 시도가 있지만 아직까지 모발 수분 추출을 어떤 온도에서 진행해야 하는지 평가법이 정해져 있지 않아 공인된 인체시험 평가가 없는 실정이다. 모발 수분 정량평가법을 확립하기 위해서 본 연구는 진행되었다. 모발 수분의 거동 패턴을 확인하기 위해 할로겐 수분 분석기로 온도를 다르게 하여 모발에 열을 가할 경우 수분 검출량은 가열 온도가 증가하면 계속 늘어나는 것을 확인하였다. 시차주사열량계로 모발의 흡열 반응 에너지를 평가한 결과 75 ℃ 부근에서 급격한 흡열 반응이 일어나는 특이한 현상을 관찰하였다. 인종별로 다른 모발에서도 이 현상은 관찰되었다. 모발 큐티클 장벽을 산화, 열로 손상시킨 모발에서는 급격히 상승하는 이 흡열 반응 온도가 조금 더 높은 77 ℃에서 일어났고, 이 모발을 극성오일 또는, 컨디셔닝 폴리머나 케라틴 단백질로 도포한 경우에는 73 ℃에서 관찰되었다. 이 반응이 모발 표면에서 어떤 영향을 미치는지 알아보기 위해서 원자현미경으로 마찰력을 관찰한 결과 75 ℃ 보다 높은 온도에서 가열할 때 큐티클 마찰력이 상승하고 그보다 높은 90 ℃에서는 변화가 없는 것을 관찰하였다. 마침내 75 ℃ 근처가 모발에 결합된 수분 분자의 탈착이 본격적으로 일어나는 임계온도임을 결론내렸다. 이를 통해 모발 수분을 검출해서 정량화하기 위한 조건으로 75 ℃가 가열온도로 최적합하고 이 때 검출된 수분량 10% 가량이 모발 케어 화장품 처리 전과 후를 비교할 수 있는 모발 수분 정량 기준값이 될 수 있음을 제시하였다.

Keywords

References

  1. C. Barba, S. Mendez, M. Marti, J. L. Parra, and L. Coderch, Water content of hair and nails, Thermochi. Acta, 494(1), 136 (2009).
  2. S. Breakspear, P. Frueh, A. Neu, B. Noecker, C. Popescu, and Q. Uellner, Learning from hair moisture sorption and hysteresis, Int. J. Cosmet. Sci., 44(5), 555 (2022).
  3. R. Dawber, Hair: Its structure and response to cosmetic preparations, Clin. Dermatol. 14(1), 105 (1996).
  4. J. A. Seo, I. H. Bae, W. H. Jang, J. H. Kim, S. Y. Bak, S. H. Han, Y. H. Park, and K. M. Lim, Hydrogen peroxide and monoethanolamine are the key causative ingredients for hair dye-induced dermatitis and hair loss, J. Dermatol. Sci., 66(1), 12 (2012).
  5. M. F. Dias, Hair cosmetics: an overview, Int. J. Trichol., 7(1), 2 (2015).
  6. Y. Lee, Y. Kim, H. Hyun, L. Pi, X. Jin, and W. S. Lee, Hair shaft damage from heat and drying time of hair dryer, Ann. Dermatol., 23(4), 455 (2011).
  7. A. Tinoco, A. F. Costa, S. Luis, M. Martins, A. Cavaco-Paulo, and A. Ribeiro, Proteins as hair styling agnets, Appl. Sci., 11(9), 4245 (2021).
  8. C. R. Robbins, Chemical and Physical Behavior of Human Hair, eds C. R. Robbins, 5th edition, Springer, Heidelberg (2012).
  9. M. A. Oliver, L. Coderch, V. Carrer, C. Barba, and M. Marti, Ethnic hair: Thermoanalytical and spectroscopic differences, Skin Res. Technol., 26(5), 617 (2020).
  10. C. Bontozoglou, X. Zhang, A. Patel, M. E. Lane, and P. Xiao, In vivo human hair hydration measurements by using opto-thermal radiometry, Int. J. Thermophys., 40, 22 (2019).
  11. W. Qu, X. Guo, G. Xu, S. Zou, Y. Wu, C. Hu, K Chang, and J. Wang, Improving the mechanical properties of damaged hair using low-molecular weight hyaluronate, Molecules, 27(22), 2201 (2022).
  12. J. Cao, Melting study of the alpha-form crystallites in human hair keratin by DSC, Termochim. Acta, 335(1-2), 5 (1999).
  13. C. Popes cu and C. Gummer, DSC of human hair: a tool for claim support or incorrect data analysis?, Int. J. Cosmet. Sci., 38(5), 433 (2016).
  14. F. J. Wortmann, C. Springob, and G. Sendelbach, Investigations of cosmetically treated human hair by differential scanning calorimetry in water, J. Cosmet. Sci., 53(4), 219 (2002).
  15. C. R. R. C. Lima, L. D. B. Machado, M. V. R. Velasco, and J. R. Matos, DSC measurements applied to hair studies, J. Therm. Anal. Calorim., 132, 1429 (2018).
  16. C. Lima, M. Almeida, M. Velasco, and J. Matos, Thermoanalytical characterization study of hair from different ethnbicities, J Therm. Anal. Calorim., 123, 2321 (2016).
  17. M. Korte, S. Akari, H. Kuhn, N. Baghdadli, H. Mohwald, and G. S. Luengo, Distribution and localization of hydrophobic and ionic chemical groups at the surface of bleached human hair fibers, Lamgnuir, 30(41), 12124 (2014).
  18. J. Samith, J. Tsibouklis, T. G. Nevell, and S. Breakspear, AFM friction and adhesion mapping of the substructures of human hair cuticles, Appl. Surf. Sci., 285(Part B), 638 (2013).
  19. A. M. Schwartz and D. C. Knowles, Frictional effects in human hair, J. Soc. Cosmet. Chem., 14(9), 455 (1963).