DOI QR코드

DOI QR Code

In Vitro Anti-aging and Hair Follicle Dermal Papilla Cells Activation Effects of Usnea diffracta Vain Extract

송라 추출물의 세포 수준에서 항노화 및 모유두세포 활성화 효과

  • Min Jeong Kim (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Won Yeoung Choi (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Hyun Woo Shim (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Eun Jin Shin (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Jung No Lee (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Sung Min Park (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Hwa Sun Ryu (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation)
  • 김민정 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 최원영 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 심현우 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 신은진 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 이정노 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 박성민 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 유화선 ((주)코씨드바이오팜 피부사랑임상연구센터)
  • Received : 2023.11.21
  • Accepted : 2023.12.29
  • Published : 2024.03.30

Abstract

Songla (Usnea diffracta Vain.) is one of the lichens belonging to the genus Usnea, and pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory, anti-tumor and cardiovascular protection have been reported in previous studies, but its efficacy in skin and hair is not well known. In this study, the effect of Usnea diffracta extract (UDE) on anti-aging and dermal papilla cell proliferation was verified in vitro. As a result of the experiment, it was confirmed that the UDE significantly reduced the expression of MMP-1 and the activity of MAPKs (ERK, p38, JNK) and AP-1 (c-Fos, c-Jun), which were increased by UVA in HDFn. In addition, the UDE significantly increased the proliferation of HFDPC and significantly increased the mRNA expression of VEGF and KGF, which are hair growth factors. Accordingly, the phosphorylation of ERK/CREB involved in hair proliferation and expression of growth factors was increased in a concentration-dependent manner. The main component represented by the main peak was separated and purified using Prep LC by concentrating the UDE, which was confirmed as diffractaic acid through NMR and Mess analysis. Isolated diffractaic acid significantly reduced the expression of MMP-1 increased by UVA in HDFn and increased the proliferation of HFDPC in a concentration-dependent manner. The result suggest that UDE proved its usability as a natural cosmetic material with anti-aging and dermal papilla cell activation effects.

송라(Usnea diffracta Vain.)는 송라속(Usnea)에 속하는 지의류 중 하나이며, 이전 연구에서 항산화, 항균, 항염, 항종양 및 심혈관 보호 등의 약리학적 활성이 보고되어 있으나 피부 및 모발에서의 효능은 잘 알려져 있지 않다. 따라서 본 연구에서는 세포 수준에서 송라 추출물(UDE)의 항노화 및 모유두세포 증식에 대한 효과를 검증하였다. 실험 결과, 송라 추출물은 인간 섬유아세포에서 UVA에 의해 증가된 MMP-1의 발현 및 상위기전인 MAPKs (ERK, p38, JNK)와 AP-1 (c-Fos, c-Jun)의 활성을 유의적으로 감소하는 것을 확인하였다. 또한, 송라 추출물은 인간 모유두세포의 증식을 유의하게 증가시켰으며, 모발 성장인자인 VEGF 및 KGF의 mRNA 발현을 유의하게 증가시켰다. 이로 인하여, 모발 증식 및 성장인자의 발현에 관여하는 ERK/CREB의 인산화를 농도 의존적으로 증가시켰다. 송라 추출물의 주성분 확인을 위해 송라 추출물을 농축 후 Prep-LC를 이용하여 main peak로 나타난 분획을 분리 정제하였고, NMR 및 Mess 분석을 통해 diffractaic acid로 동정하였다. Diffractaic acid는 인간 섬유아세포에서 UVA에 의해 증가된 MMP-1의 발현을 유의적으로 감소시켰으며, 인간 모유두세포의 증식을 농도 의존적으로 증가시켰다. 이를 통해 송라 추출물은 항노화 및 모유두세포 활성 증가 효능을 갖는 화장품 천연소재로서의 활용 가능성을 입증하였다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(과제번호: 2021RIS-001).

References

  1. M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, Br. J. Dermatol., 157(5), 874 (2007). 
  2. S. Jeon and M. Choi, Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs), Biomedical Dermatology, 2(1), 1 (2018). 
  3. S. Tang, R. Lucius, H. Wenck, S. Gallinat, and J. M. Weise, UV-mediated downregulation of the endocytic collagen receptor, Endo180, contributes to accumulation of extracellular collagen fragments in photoaged skin, J. Dermatol. Sci, 70(1), 42 (2013). 
  4. G. L. Johnson and R. Lapadat, Mitogen-activated protein kinase pathways m ediated by ERK, JNK, and p38 protein kinases, Science, 298(5600), 1911 (2002). 
  5. E. Martinez, Multi-protein complexes in eukaryotic gene transcription, Plant. Mol. Biol., 50, 925 (2002). 
  6. P. Huang, J. Han, and L. Hui, MAPK signaling in inflammation-associated cancer development, Protein Cell., 1(3), 218 (2010). 
  7. M. R. Schneider, R. Schmidt-Ullrich, and R. Paus, The hair follicle as a dynamic miniorgan, Curr. Biol., 19(3), R132 (2009). 
  8. H. Y. Park, S. N. Kim, B. H. Kang, and J. H. Lee, Experimental studies of Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) extracts on the effects of hair growth activity and physical properties, Korean J. Oriental Med., 16(3), 167 (2010). 
  9. G. Cotsarelis and S. E. Millar, Towards a m olecular understanding of hair loss and its treatment, Trends. Mol. Med., 7(7), 293 (2001). 
  10. Y. Zhang, C. Ni, Y. Huang, Y. Tang, K. Yang, X. Shi, and W. Wu, Hair growth-promoting effect of resveratrol in m ice, hum an hair follicles and derm al papilla cells, Clin. Cosmet. Investig. Dermatol., 14, 1805 (2021). 
  11. O. S. Kwon, J. H. Han, H. G. Yoo, J. H. Chung, K. H. Cho, H. C. Eun, and K. H. Kim, Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG), Phytomedicine, 14(7), 551 (2007). 
  12. D. M. Danilenko, B. D. Ring, D. Yanagihara, W. Benson, B. Wiemann, C. O. Starnes, and G. F. Pierce, Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia, Am. J. Pathol., 147(1), 145 (1995). 
  13. J. Kim, S. R. Kim, Y. H. Choi, J. Y. Shin, C. D. Kim, N. G. Kang, and S. Lee, Quercitrin stimulates hair growth with enhanced expression of growth factors via activation of MAPK/CREB signaling pathway, Molecules, 25(17), 4004 (2020). 
  14. A. Steven and B. Seliger, Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target, Oncotarget, 7(23), 35454 (2016). 
  15. Y. B. Kwon and Y. H. Choi, Isolation of antimicrobial active substance from Usnea longissima against sclerotial rot (Sclerotinia sclerotiorum), Korean J. Org. Agric., 23(4), 887 (2015). 
  16. X. Zhao, J. Zhu, L. Wang, Y. Li, T. Zhao, X. Chen, and Z. Yan, U. diffracta extract mitigates high fat diet and VD3-induced atherosclerosis and biochemical changes in the serum liver and aorta of rats, Biomed. Pharmacother., 120, 109446 (2019). 
  17. B. C. Behera, N. Mahadik, and M. Morey, Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psorom ic acid produced by lichen species Usnea complanata under submerged fermentation, Pharm. Biol., 50(8), 968 (2012). 
  18. S. Ceker, F. Orhan, H. E. Kizil, L. Alpsoy, M. Gulluce, A. Aslan, and G. Agar, Genotoxic and antigenotoxic potentials of two Usnea species, Toxicol. Ind. Health., 31(11), 990 (2015). 
  19. S. Singh, S. Khatoon, Y. Joshi, S. Prgyadeep, D. K. Upreti, and A. K. S. Rawat, A validated HPTLC densitometric method for simultaneous determination of evernic and usnic acids in four Usnea species and comparison of their antioxidant potential, J. Chromatogr. Sci., 54(9), 1670 (2016). 
  20. N. R. Vanga, A. Kota, R. Sistla, and M. Uppuluri, Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima, Mol. Divers., 21(2), 273 (2017). 
  21. A. Page-McCaw, A. J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nat. Rev. Mol. Cell. Biol., 8(3), 221 (2007). 
  22. N. Xue, Y. Liu, J. Jin, M. Ji, and X. Chen, Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in human dermal fibroblasts, Int. J. Mol. Sci., 23(13), 6941 (2022). 
  23. K. S. Kim, Analysis of cell protective effects and mechanisms of ellagic acid against UVA-induced damages in human dermal papilla cells, Kor. J. Aesthet. Cosmetol., 13(6), 833 (2015). 
  24. G. M. Halliday, Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis, Mutat. Res., 571(1-2), 107 (2005). 
  25. G. J. Fisher, H. C. Choi, Z. Bata-Csorgo, Y. Shao, S. Datta, Z. Q. Wang, S. Kang, and J. J. Voorhees, Ultraviolet irradiation increases matrix metalloproteinase-8 protein in human skin in vivo, J. Invest. Dermatol., 117(2), 219 (2001). 
  26. M. R. Schneider, R. Schmidt-Ullrich, and R. Paus, The hair follicle as a dynamic miniorgan, Curr. Biol., 19(3), R132 (2009). 
  27. V. A. Randall, N. A. Hibberts, M. J. Thornton, A. E. Merrick, K. Hamada, S. Kato, T. J. Jenner, I. De Oliveira, and A. G. Messenger, Do androgens influence hair growth by altering the paracrine factors secreted by dermal papilla cells?, Eur. J. Dermatol., 11(4), 315 (2001). 
  28. L. S. Wood, New therapeutic strategies for renal cell carcinoma, Urol. Nurs., 30(1), 40 (2010) 
  29. H. Wang, J. Xu, P. Lazarovici, R. Quirion, and W. Zheng, cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia, Front. Mol. Neurosci., 11, 255 (2018). 
  30. M. Iino, R. Ehama, Y. Nakazawa, T. Iwabuchi, M. Ogo, M. Tajima, and S. Arase, Adenosine stimulates fibroblast growth factor-7 gene expression via adenosine A2b receptor signaling in dermal papilla cells, J. Invest. Dermatol., 127(6), 1318 (2007). 
  31. Y. Ohmura, A synopsis of the lichen genus Usnea (Parmeliaceae, Ascomycota) in Taiwan, Mem. Natl. Mus. Nat. Sci., Tokyo, 48, 91 (2012). 
  32. E. Okuyama, K. Umeyama, M. Yamazaki, Y. Kinoshita, and Y. Yamamoto, Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta, Planta. Med., 61(2), 113 (1995). 
  33. K. C. Kumar and K. Muller, Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth, J. Nat. Prod., 62(6) 821 (1999). 
  34. S. Gunaydin, E. K. Sulukoglu, S. N. Kalin, A. Altay, and H. Budak, Diffractaic acid exhibits thioredoxin reductase 1 inhibition in lung cancer A549 cells, J. Appl. Toxicol., 43(11), 1676 (2023). 
  35. I. D. Karagoz, M. Ozaslan, I. H. Kilic, I. Guler, C. Uyar, D. Tuter, U. Kazanci, A. Aslan, A. Cakir, and S. Gezici, Hepatoprotective effect of diffractaic acid on carbon tetrachloride-induced liver damage in rats, Biotechnol. Biotechnol. Equip., 29(5), 1011 (2015).