DOI QR코드

DOI QR Code

Plasma Cosmetic Container Suitability

플라즈마 화장품 용기 적합성

  • Ha Hyeon Jo (Department of Biological Science, Ajou University) ;
  • You-Yeon Chun (Department of Biological Science, Ajou University) ;
  • Hyojin Heo (Department of Applied Biotechnology, Ajou University) ;
  • Sang Hun Lee (Department of Biological Science, Ajou University) ;
  • Lei Lei (Department of Biological Science, Ajou University) ;
  • Ye Ji Kim (COSMAX R&I Center) ;
  • Byeong-Mun Kwak (Department of Biological Science, Ajou University) ;
  • Mi-Gi Lee (Bio-Center, Gyeonggido Business and Science Accelerator) ;
  • Bum-Ho Bin (Department of Biological Science, Ajou University)
  • 조하현 (아주대학교 생명과학과) ;
  • 천유연 (아주대학교 생명과학과) ;
  • 허효진 (아주대학교 응용생명공학과) ;
  • 이상훈 (아주대학교 생명과학과) ;
  • ;
  • 김예지 (코스맥스(주) R&I center) ;
  • 곽병문 (아주대학교 생명과학과) ;
  • 이미기 (경기도경제과학진흥원) ;
  • 빈범호 (아주대학교 생명과학과)
  • Received : 2023.10.13
  • Accepted : 2024.01.18
  • Published : 2024.03.30

Abstract

For plasma cosmetics, it is important to ensure the long-term stability of plasma in the formulation. This study examined the suitability of containers for efficient plasma cosmetics development. By varying the surface area covered by the plasma, 4 cm2, 25 cm2, 75 cm2, and 175 cm2 containers were injected with cosmetic plasma, and the amount of nitric oxide (NO), the main active species of nitrogen plasma, was analyzed. As a result, the surface area and stability exposed to plasma tended to be inversely proportional, and it was most effective in a 4 cm2 container. Furthermore, 25 mm, 40 mm, and 50 mm vials were treated with plasma, which resulted in relative long-term stability of NO at 25 mm, a smaller surface area of the container exposed to air. Water mist and stratified mist were selected as cosmetic formulations, and NO plasma was injected into the water layer to observe the changes in formulation properties and the state of the injected NO plasma. In both formulations, the amount of NO plasma injected was about 1.5 times higher in the water phase mist than in the stratified mist, and the stratified mist gradually decreased with time and was found to disappear after 3 weeks. The stability of the nitrogen plasma was studied at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃). As a result, it was found that the water mist did not affect the stability, but the stratified mist observed a color change in the oil phase layer. Overall, this study demonstrates the container suitability of nitrogen plasma and suggests the importance of ensuring the stability of injected nitrogen plasma in cosmetic formulations.

플라즈마 화장품은, 플라즈마의 제형 내 장기 안정성을 확보하는 것이 중요하다. 이번 연구는 효율적인 플라즈마 화장품 개발을 위하여 용기 적합성을 검토하였다. 플라즈마가 닿는 표면적을 달리하여, 4 cm2, 25 cm2, 75 cm2, 175 cm2 용기 별로 화장품 제조용 플라즈마를 주입 후, 질소 플라즈마 주요 활성 종인 nitric oxide (NO)의 양을 추적 분석 하였다. 그 결과, 플라즈마에 노출된 표면적과 안정도는 반비례 경향을 나타내었고, 4 cm2 용기에서 가장 효과적이었다. 추가적으로, 25 mm, 40 mm, 50 mm 바이알 병에 플라즈마를 처리하였고, 그 결과 공기에 노출된 용기의 표면 면적이 작은 25 mm에서 NO의 상대적 장기 안정성이 확보되었다. 화장품 제형으로 수상 미스트(water mist)와 층 분리 미스트(stratified mist)를 선택하여 수상층 부분에 NO 플라즈마를 주입 후 제형의 성상 및 주입한 NO 플라즈마의 상태 변화를 관찰하였다. 두 제형에서 NO 플라즈마의 주입량은 수상 미스트가 층 분리 미스트보다 약 1.5 배 가량 높았으며, 층 분리 미스트는 시간에 따라 점차 감소하여 3 주 후, 소실되는 것이 확인되었다. 저온(4 ℃), 실온(25 ℃), 고온(37 ℃, 50 ℃)에서 질소 플라즈마의 안정도를 진행하였다. 그 결과 수상 미스트는 안정도에 영향을 미치지 않는 것을 확인하였지만, 층 분리 미스트는 유상층에서 색 변화를 관찰하였다. 종합적으로, 본 연구는 질소 플라즈마의 용기 적합성을 제시하고 있으며 화장품 제형 내 주입된 질소 플라즈마의 안정성 확보의 중요성을 시사하고 있다.

Keywords

Acknowledgement

This research was supported by a grant from the Ajou University Research Fund (to B. H. B.) and the Gyeonggido Business & Science Accelerator (GBSA) grant (to B. H. B.).

References

  1. U. H. Hwang, S. K. Park, S. D. Kim, and J. H. Kim, A study on the NO decomposition characteristics using non-thermal plasma process, J. of KSEE, 23(11), 1795 (2001). 
  2. D. G. Lim, Oxidative stress; reactive oxygen species and nitric oxide, Acute. Critical. Care., 19(2), 81 (2004). 
  3. M. M. Cals-Grierson and A. D. Ormerod, Nitric oxide function in the skin, Nitric Oxide, 10(4), 179 (2004). 
  4. Ihn. Han, Plasma devices for cosmetic and aesthetic treatment, Plasma Biosciences and Medicine. Singapore, 229 (2023). 
  5. D. B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J. Phys. D., 45(26) (2012). 
  6. R. Bruckdorfer, The basics about nitric oxide, Mol. Aspects. Med.. 26(1-2), 3 (2005). 
  7. C. H. Kim, New conversing technology; plasma medicine, Korean J Otorhinolaryngology-Head Neck Surg., 53(10), 593 (2010). 
  8. E. Y. Choi, J. K. Noh, N. Hasan, and J. W. Yoo, Antimicrobial mechanisms of nitric oxide and strategies for developing nitric oxide-based antimicrobial agents, Korean Jounnal of Microbiology, 50(2), 87 (2014). 
  9. X. Hu, G. B. Zhao, J. J. Zhang, L. Wang, and Maciej Radosz, Nonthermal-plasma reactions of dilute nitrogen oxide mixtures: NOx-in argon and NOx+CO-in-argon, Ind. Eng. Chem. Res., 43(23), 7456 (2004). 
  10. H. Shintani, A. Sakudo, P. Burke, and G. McDonnell, Gas plasma sterilization of microorganisms and mechanisms of action, Exp. Ther. Med., 1(5), 731 (2010). 
  11. M. G. Espey, K. M. Miranda, D. D. Thomas, S. Xavier, D. Citrin, M. P. Vitek, and D. A. Wink, A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species, Ann. N Y Acad. Sci., 962(1), 195 (2002). 
  12. C. V. Suschek and C. Oplander, The application of cold atmospheric plasma in medicine: The poteneial role of nitric oxide in plasma-induced effects, Clinical Plasma Medicine, 4(1), 1 (2016) 
  13. S. M. Lee, S. Y. Jung, S. Brito, H. Heo, B. Cha, Lei Lei, S. H. Lee, M. G. Lee, B. H. Bin, and B. M. Kwan, Evaluation of the potential of nitrogen plasma to cosmetics, J. Soc. Cosmet. Sci. Korea, 48(3), 189 (2022). 
  14. S. H. In, H. Cho, N. G. Kang, J. S. Han, S. G. Park, and C. K. Lee. Synergistic ineraction in W/O and W/S emulsions stabilized by a mixture of powders and surfactant, J Soc. Cosmet. Sci. Korea 42(1), 15 (2016). 
  15. A. V. Butenko, A. B. Snekhter, A. V. Pekshev, A. B. Vagapov, A. L. Fayzullin, N. B. Serejnikova, N. A. Sharapov, V. A. Zaborova, and V. N. Vasilets, Review of clinical pplications of nitric oxide-conaining air-plasma gas flow generated by Plason device, Clinical Plasma Medicine, 19-20, 100112 (2020). 
  16. M. Gavahian, Y. H. Chu, A. M. Khaneghah, F. J. Barna, and N. N. Misra. A critical analysis of the cold plasma induced lipid oxidation in foods, Trends in Food Science & Technology. 77, 32 (2018). 
  17. J. V. Durme and J. Vandamme, Non-thermal plasma as preparative technique to evaliate live oil adulteration, Fod Chemi., 208, 185 (2016). 
  18. X. V. Yepez, H. Baykara, L. Xu, and K. M. Keener. Cold plasma treatment of soybean oil with hydrogen gas, JAOCS, 98(1), 103 (2021). 
  19. M. Xu and Y. Li. Infected wound healing using plasma activated oil, IEEE Transactions on Plasma Science, 47(11), 4827 (2019). 
  20. S. Y. Jung, H. R. Kang, H. J. Yoo, H. Choi, H. Heo, B. Cha, S. Brito, S. M. Lee, H. L. Yeo, S. J. Kang, D. Y. Lee, B. M. Kwak, M. G. Lee, and B. H. Bin, Application of nanoparticles derived from Artemisia princeps for cosmetic products, J. Soc. Cosmet. Sci. Korea, 47(3), 265 (2021).