DOI QR코드

DOI QR Code

충격파 유동노출에 따른 황화납 나노소재의 미세구조 및 자기광학적 특성 분석에 관한 실험적 연구

Effect of Shock Wave Exposure on Structural, Optical and Magnetic Properties of Lead Sulfide Nanoparticles

  • Kiwon Kim (Department of Mechanical Engineering, Keimyung University) ;
  • Surendhar Sakthivel (Department of Mechanical Engineering, Keimyung University) ;
  • J. Sahadevan (Centre for Material Science, Karpagam Academy of Higher Education) ;
  • P. Sivaprakash (Department of Mechanical Engineering, Keimyung University) ;
  • Ikhyun Kim (Department of Mechanical Engineering, Keimyung University)
  • 투고 : 2023.11.14
  • 심사 : 2023.12.04
  • 발행 : 2024.03.31

초록

A series of shock wave pulses with Mach number 2.2 of 100, 200, and 300 shocks were applied to lead sulfide (PbS) nanomaterials at intervals of 5 sec per shock pulse. To investigate the crystallographic, electronic, and magnetic phase stabilities, powder X-ray diffractometry (XRD), diffused reflectance spectroscopy (DRS), and vibrating-sample magnetometry (VSM) were employed. The material exhibited a rock salt structure (NaCl-type structure); XRD results indicated that material is monoclinic with space group C121 (5). Further, XRD results showed shifts due to lattice contraction and expansion when material was subjected to shock wave pulses, indicating stable material structure. Based on the data obtained, we believe that the PbS material is a good choice for high-pressure, high-temperature, and aerospace applications due to its superior shock resistance characteristics.

키워드

과제정보

The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).

참고문헌

  1. Yun, N., Kang, C., Yang, S., Hwang, S. -H., Park, J. -M. and Choi, T. -L., 2023, "Size-Tunable Semiconducting 2D Nanorectangles from Conjugated Polyenyne Homopolymer Synthesized via Cascade Metathesis and Metallotropy Polymerization," J. Am. Chem. Soc., Vo.145(16), pp.9029~9038. https://doi.org/10.1021/jacs.3c00357
  2. Ussembayev, Y. Y., Zawacka, N. K., Strubbe, F., Hens, Z. and Neyts, K., 2021, "Waveguiding of Photoluminescence in a Layer of Semiconductor Nanoparticles," Nanomater., Vol.11(3), 683.
  3. Sahadevan, J., Muthu, S. E., Kavu, K., Arumugam, S., Kim, I., Baby Sri Pratha, G. and Sivaprakash, P., 2022, "Structural, Morphology and Optical Properties of PbS (Lead Sulfide) Thin Film," Mater. Today: Proc., Vol.64(5), pp.1849~1853. https://doi.org/10.1016/j.matpr.2022.06.311
  4. Baraton, M. -I., 2006, "Metal Oxide Semiconductor Nanoparticles for Chemical Gas Sensors," IEEJ Trans., Vol.126(10), pp.553~559. https://doi.org/10.1541/ieejsmas.126.553
  5. Wattoo, M. H. S., Quddos, A., Wadood, A., Khan, M. B., Wattoo, F. H., Tirmizi, S. A. and Mahmood, K., 2012, "Synthesis, Characterization and Impregnation of Lead Sulphide Semiconductor Nanoparticles on Polymer Matrix," J. Saudi Chem. Soc., Vol.16(3), pp.257~261. https://doi.org/10.1016/j.jscs.2011.01.006
  6. Ezekoye, B. A., Emeakaroha, T. M., Ezekoye, V. A., Ighodalo, K. O. and Offor, P. O., 2015, "Optical and Structural Properties of Lead Sulphide (PbS) Thin Films Synthesized by Chemical Method," Int. J. Phys. Sci., Vol.10(13), pp.385~390. https://doi.org/10.5897/IJPS2015.4354
  7. Sadovnikov, S. I., Gusev, A. I. and Rempel, A. A., 2016, "Nanostructured Lead Sulfide: Synthesis, Structure and Properties," Russ. Chem. Rev., Vol.85, 731.
  8. Chongad, L. S., Sharma, A., Banerjee, M. and Jain, A., 2016, "Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method," J. Phys. Conf. Ser., Vol.755, 012032.
  9. Gode, F., Yavuz, F. and Kariper, I. A., 2015, "Preparation and Characterization of Nanocrystalline PbS Thin Films Produced by Chemical Bath Deposition," Acta Phys. Pol. A., Vol.128, pp.215~219. https://doi.org/10.12693/APhysPolA.128.215
  10. Begum, A., Hussain, A. and Rahman, A., 2012, "Effect of Deposition Temperature on The Structural and Optical Properties of Chemically Prepared Nanocrystalline Lead Selenide Thin Films," Beilstein J. Nanotechnol., Vol.3, pp.438~443. https://doi.org/10.3762/bjnano.3.50
  11. Saran, R. and Curry, R. J., 2016, "Lead Sulphide Nanocrystal Photodetector Technologies," Nat. Photonics, Vol.10, pp.81~92. https://doi.org/10.1038/nphoton.2015.280
  12. Jahromi, H. D. and Moaddeli, M., 2019, "Lead Sulfide; A New Candidate for Optoelectronics Applications in The Ultra Violet Spectral Range," Mater. Res. Express, Vol.6(11), 116220.
  13. Saikia, D. and Phukan, P., 2014, "Fabrication and Evaluation of CdS/PbS Thin Film Solar Cell by Chemical Bath Deposition Technique," Thin Solid Films, Vol.562, pp.239~243. https://doi.org/10.1016/j.tsf.2014.04.065
  14. Knorr, K., Ehm, L., Hytha, M., Winkler, B. and Depmeier, W., 2003, "The High-Pressure α/β Phase Transition in Lead Sulphide (PbS)," Eur. Phys. J. B - Condens. Matter, Vol.31, pp.297~303.
  15. Kim, H. J., Lee, J. B., Kim, Y. -M., Jung, M. -H., Jaglicic, Z., Umek, P. and Dolinsek, J., 2007, "Synthesis, Structure and Magnetic Properties of β-MnO2 Nanorods," Nanoscale Res. Lett., Vol.2, pp.81~86. https://doi.org/10.1007/s11671-006-9034-4
  16. Sivakumar, A., Sahaya Jude Dhas, S., Thirupathy, J., Sivaprakash, P., Anitha, K., Suresh Kumar, R., Arumugam, S. and Martin Britto Dhas, S. A., 2022, "Investigation on Crystallinity and Optical Properties of l-tartaric Acid Single Crystal at Dynamic Shocked Conditions," J. Mater. Sci. Mater. Electron., Vol.33, pp.10841~10850. https://doi.org/10.1007/s10854-022-08065-4
  17. Datey, A., Subburaj, J., Gopalan, J. and Chakravortty, D., 2017, "Mechanism of Transformation in Mycobacteria Using a Novel Shockwave Assisted Technique Driven by in-situ Generated Oxyhydrogen," Sci. Rep., Vol.7, 8645.
  18. Sivakumar, A., Eniya, P., Sahaya Jude Dhas, S., Dai, Lidong., Sivaprakash, P., Kumar, R. S., Almansour, A. I., Kalyana Sundar, J., Kim, I. and Martin Britto Dhas, S. A., 2023, "Comparative Analysis of Crystallographic Phase Stability of Single and Poly-Crystalline Lead Nitrate at Dynamic Shocked Conditions," Mat. Sci. Eng. B, Vol.298, 116839.
  19. Sivakumar, A., Sahaya Jude Dhas, S., Dai, L., Pushpanathan, V., Sivaprakash, P., Suresh Kumar, R., R., Almansour, A. I., Kim, I., Johnson, J. and Martin Britto Dhas, S. A., 2023, "Diffraction and Microscopic Studies on Lithium Sulfate Doped L-Threonine Under Dynamic Shock Wave Exposed Conditions," Phys. B: Condens., Vol.665, 415065.
  20. d' Agostino, M. C., Craig, K., Tibalt, E. and Respizzi, S., 2015, "Shock Wave as Biological Therapeutic Tool: From Mechanical Stimulation to Recovery and Healing, Through Mechano Transduction," Int. Surg. J., Vol.24, pp.147~153. https://doi.org/10.1016/j.ijsu.2015.11.030
  21. Ligrani, P. M., McNabb, E. S., Collopy, H., Anderson, M. and Marko, S. M., 2020, "Recent Investigations of Shock Wave Effects and Interactions," Adv. Aerodyn., Vol.2, 4.
  22. Kim, I., Park, G. and Na, J. J., 2019, "Experimental Study of Surface Roughness Effect on Oxygen Catalytic Recombination," Int. J. Heat Mass Transf., Vol.138, pp.916~922. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.049
  23. Sivakumar, A., Sahaya Jude Dhas, S., Dai, L., P. Sivaprakash, P., Vasanthi, T., Vijayakumar, V. N., Suresh Kumar, R., Pushpanathan, V., Arumugam, S., Kim, I. and Martin Britto Dhas, S. A., 2023, "Structural Phase Stability Analysis on Shock Wave Recovered Single- and Polycrystalline Samples of NiSO4.6H2O," JOM, Vol. 75, pp.4611~4618. https://doi.org/10.1007/s11837-023-06023-x
  24. Devarajan, U., Sivaprakash, P., Garg, A. B., Kim, I. and Arumugam, S., 2023, "Investigation of Magnetic and Transport Properties of Co2FeSi Spin Glass Heusler Alloy Under Extreme Conditions," J. Supercond. Nov. Magn., Vol.36, pp.1611~1618. https://doi.org/10.1007/s10948-023-06601-9
  25. Kim, I. and Park, G., 2019, "Experimental Study of Oxygen Catalytic Recombination on a Smooth Surface in a Shock Tube," Appl. Therm. Eng., Vol.156, pp.678~691. https://doi.org/10.1016/j.applthermaleng.2019.04.054
  26. Thiel, M., 2001, "Application of Shock Waves in Medicine," Clin. Orthop. Relat. Res., Vol.387, pp.18~21. https://doi.org/10.1097/00003086-200106000-00004
  27. Zheng, X., Gao, F., Ji, F., Wu, H., Zhang, J., Hu, X. and Xiang, Y., 2016, "Cu-doped PbS Thin Films with Low Resistivity Prepared via Chemical Bath Deposition," Mater. Lett., Vol.167, pp.128~130. https://doi.org/10.1016/j.matlet.2015.12.077
  28. Reddy, K. P. J., 2013, "Manually Operated Piston Driven Mini Shock Tube," 28th International Symposium on Shock Waves, Vol.104, pp.561~565.
  29. Sivakumar, A. and Martin Britto Dhas, S. A., 2019, "Shock-Wave-Induced Nucleation Leading to Crystallization in Water," J. Appl. Cryst., Vol.52, pp.1016~1021. https://doi.org/10.1107/S1600576719009488
  30. Cho, S. H. and Kim, I., 2022, "Hypersonic Shockwave Robustness in Infrared Plasmonic Doped Metal Oxide Nanocrystal Cubes: Implications for High-Speed Ballistics Transport Applications," ACS Appl. Nano Mater., Vol. 5(12), pp.17487~17495. https://doi.org/10.1021/acsanm.2c04198
  31. Sivakumar, A., Sahaya Jude Dhas, S., Elberin Mary Thera, J., Jose, M., Sivaprakash, P., Arumugam, S. and Martin Britto Dhas, S.A., 2021, "Spectroscopic and Diffraction Studies of Polycrystalline Copper Sulfate Pentahydrate at Shocked Conditions," Solid State Sci., Vol.121, 106751.
  32. Sivakumar, A., Sahaya Jude Dhas, S., Dai, L., Sivaprakash, P., Suresh Kumar, R., Almansour, A. I., Arumugam, S., Kim, I. and Martin Britto Dhas, S. A., 2023, "Sustainability of Crystallographic Phase of α-Glycine Under Dynamic Shocked Conditions," J. Mol. Struct., Vol.1292, 136139.
  33. Sivakumar, A., Sahaya Jude Dhas, S., Lidong Dai, Sivaprakash, P., Suresh Kumar, R., Abdulrahman I. A., Arumugam, S., Kim, I. and Martin Britto Dhas, S.A., 2023, "Sustainability of Crystallographic Phase of α-Glycine Under Dynamic Shocked Conditions," J. Mol. Struct, Vol.1292, 136139.
  34. Sivakumar, A., Sahaya Jude Dhas, S., Sivaprakash, P., Dhayal Raj, A., Suresh Kumar, R., Arumugam, S., Prabhu, S., Ramesh, R., Shubhadip, C. and Martin Britto Dhas, S. A., 2022, "Shock Wave Recovery Experiments on α-V2O5 Nano-Crystalline Materials: A Potential Material for Energy Storage Applications," J. Alloys Compd., Vol.929, 167180.
  35. Giribabu, K., Ranganathan, S., Manigandan, R., Vijayalakshmi, L., Stephen, A. and Narayanan, V., 2012, "Hydrothermal Synthesis of Lead Sulphide Nanoparticles and Their Electrochemical Sensing Property," Adv. Mater. Res., Vol.584, pp.276~279. https://doi.org/10.4028/www.scientific.net/AMR.584.276
  36. Phua, Y. J., Chow, W. S. and Mohd Ishak, Z. A., 2011, "The Hydrolytic Effect of Moisture and Hygrothermal Aging on Poly (Butylene Succinate)/Organo-Montmorillonite Nanocomposites," Polym Degrad Stab., Vol.96(7), pp.1194~1203. https://doi.org/10.1016/j.polymdegradstab.2011.04.017
  37. Bakshi, M. S., Thakur, P., Sachar, S., Kaur, G., Banipal, T. S., Possmayer, F. and Petersen, N. O., 2007, "Aqueous Phase Surfactant Selective Shape-Controlled Synthesis of Lead Sulfide Nanocrystals," J. Phys. Chem. C., Vol.111(49), pp.18087~18098. https://doi.org/10.1021/jp075477c
  38. Sivaprakash, P., Esakki Muthu, S., Saravanan, C., Rama Rao, N. V. and Kim, I., 2023, "The Effect of Mn on Structural, Magnetic and Magnetoresistance Properties of Ni-Mn-Sb Heusler Melt-Spun Ribbons Under Extreme Conditions" J. Phys. D: Appl. Phys., Vol.56(49), 495002.
  39. Delhi Dona, E., Sivakumar, A., Sahaya Jude Dhas, S., Sivaprakash, P., Arumugam, S. and Martin Britto Dhas, S.A., 2021, "Sustainability of Corundum-Type Cr2O3 Nanoparticles at Shock Wave Loaded Conditions," Solid State Sci., Vol.119, 106701.